Functions

eKuiper has many built-in functions for performing calculations on data.

Aggregate Functions

Aggregate functions perform a calculation on a set of values and return a single value. Aggregate functions can be used as expressions only in the following:

  • The select list of a SELECT statement (either a sub-query or an outer query).
  • A HAVING clause.
Function Example Description
avg avg(col1) The average of the values in a group. The null values will be ignored.
count count(*) The number of items in a group. The null values will be ignored.
max max(col1) The maximum value in a group. The null values will be ignored.
min min(col1) The minimum value in a group. The null values will be ignored.
sum sum(col1) The sum of all the values in a group. The null values will be ignored.
collect collect(*), collect(col1) Returns an array with all column or the whole record (when the parameter is *) values from the group.
deduplicate deduplicate(col, false) Returns the deduplicate results in the group, usually a window. The first argument is the column as the key to deduplicate; the second argument is whether to return all items or just the latest item which is not duplicate. If the latest item is a duplicate, the sink will receive an empty map. Set the sink property omitIfEmpty to the sink to not triggering the action.

Collect() Examples

  • Get an array of column a of the current window. Assume the column a is of int type, the result will be like: [{"r1":[32, 45]}]
    1. SELECT collect(a) as r1 FROM test GROUP BY TumblingWindow(ss, 10)
  • Get the whole array of the current window. The result will be like: [{"r1":{"a":32, "b":"hello"}, {"a":45, "b":"world"}}]

    1. SELECT collect(*) as r1 FROM test GROUP BY TumblingWindow(ss, 10)
  • Get the second element’s column ‘a’ value within the current window. The result will be like: [{"r1":32}]

    1. SELECT collect(*)[1]->a as r1 FROM test GROUP BY TumblingWindow(ss, 10)

Deduplicate() Examples

  • Get the whole array of the current window which is deduplicated by column a. The result will be like: [{"r1":{"a":32, "b":"hello"}, {"a":45, "b":"world"}}]
    1. SELECT deduplicate(a, true) as r1 FROM test GROUP BY TumblingWindow(ss, 10)
  • Get the column a value which is not duplicate during the last hour. The result will be like: [{"r1":32}], [{"r1":45}] and [{}] if a duplicate value arrives. Use the omitIfEmpty sink property to filter out those empty results.
    1. SELECT deduplicate(a, false)->a as r1 FROM demo GROUP BY SlidingWindow(hh, 1)

Mathematical Functions

Function Example Description
abs abs(col1) The absolute value of a value
acos acos(col1) The inverse cosine of a number in radians
asin asin(col1) The inverse sine of a number in radians
atan atan(col1) The inverse tangent of a number in radians
atan2 atan2(col1, col2) The angle, in radians, between the positive x-axis and the (x, y) point defined in the two arguments
bitand bitand(col1, col2) Performs a bitwise AND on the bit representations of the two Int(-converted) arguments
bitor bitor(col1, col2) Performs a bitwise OR of the bit representations of the two arguments
bitxor bitxor(col1, col2) Performs a bitwise XOR on the bit representations of the two Int(-converted) arguments
bitnot bitnot(col1) Performs a bitwise NOT on the bit representations of the Int(-converted) argument
ceil ceil(col1) Round a value up to the nearest BIGINT value.
cos cos(col1) Returns the cosine of a number in radians.
cosh cosh(col1) Returns the hyperbolic cosine of a number in radians.
exp exp(col1) Returns e raised to the Decimal argument.
ln ln(col1) Returns the natural logarithm of the argument.
log log(col1) Returns the base 10 logarithm of the argument.
mod mod(col1, col2) Returns the remainder of the division of the first argument by the second argument.
power power(x, y) Pow returns x**y, the base-x exponential of y.
rand rand() Returns a pseudorandom, uniformly distributed double between 0.0 and 1.0.
round round(col1) Round a value to the nearest BIGINT value.
sign sign(col1) Returns the sign of the given number. When the sign of the argument is positive, 1 is returned. When the sign of the argument is negative, -1 is returned. If the argument is 0, 0 is returned.
sin sin(col1) Returns the sine of a number in radians.
sinh sinh(col1) Returns the hyperbolic sine of a number in radians.
sqrt sqrt(col1) Returns the square root of a number.
tan tan(col1) Returns the tangent of a number in radians.
tanh tanh(col1) Returns the hyperbolic tangent of a number in radians.

String Functions

Function Example Description
concat concat(col1…) Concatenates arrays or strings. This function accepts any number of arguments and returns a String or an Array
endswith endswith(col1, col2) Returns a Boolean indicating whether the first String argument ends with the second String argument.
format_time format_time(col1, format) Format a datetime to string. The ‘col1’ will be casted to datetime type if it is bigint, float or string type before formatting. Please check format patterns for how to compose the format.
indexof indexof(col1, col2) Returns the first index (0-based) of the second argument as a substring in the first argument.
length length(col1) Returns the number of characters in the provided string.
lower lower(col1) Returns the lowercase version of the given String.
lpad lpad(col1, 2) Returns the String argument, padded on the left side with the number of spaces specified by the second argument.
ltrim ltrim(col1) Removes all leading whitespace (tabs and spaces) from the provided String.
numbytes numbytes(col1) Returns the number of bytes in the UTF-8 encoding of the provided string.
regexp_matches regexp_matches(col1, regex) Returns true if the string (first argument) contains a match for the regular expression.
regexp_replace regexp_replace(col1, regex, str) Replaces all occurrences of the second argument (regular expression) in the first argument with the third argument.
regexp_substr regexp_substr(col1, regex) Finds the first match of the 2nd parameter (regex) in the first parameter.
rpad rpad(col1, 2) Returns the String argument, padded on the right side with the number of spaces specified by the second argument.
rtrim rtrim(col1) Removes all trailing whitespace (tabs and spaces) from the provided String.
substring substring(col1, start, end) returns the substring of the provided String from the provided Int index (0-based, inclusive) to the end of the String.
startswith startswith(col1, str) Returns Boolean, whether the first string argument starts with the second string argument.
split_value split_value(col1, str_splitter, index) Split the value of the 1st parameter with the 2nd parameter, and return the value of split array that indexed with the 3rd parameter.
split_value("/test/device001/message","/",0) AS a, the returned value of function is empty;
split_value("/test/device001/message","/",3) AS a, the returned value of function is message;
trim trim(col1) Removes all leading and trailing whitespace (tabs and spaces) from the provided String.
upper upper(col1) Returns the uppercase version of the given String.

Format_time patterns

A pattern is used to create a format string. Patterns are based on a simple sequence of letters and symbols which is common in many languages like Java etc. The supported symbols in Kuiper are

Symbol Meaning Example
G era G(AD)
Y year YYYY(2004), YY(04)
M month M(1), MM(01), MMM(Jan), MMMM(January)
d day of month d(2), dd(02)
E day of week EEE(Mon), EEEE(Monday)
H hour in 24 hours format HH(15)
h hour in 12 hours format h(2), hh(03)
a AM or PM a(PM)
m minute m(4), mm(04)
s second s(5), ss(05)
S fraction of second S(.0), SS(.00), SSS(.000)
z time zone name z(MST)
Z 4 digits time zone offset Z(-0700)
X time zone offset X(-07), XX(-0700), XXX(-07:00)

Examples:

  • YYYY-MM-dd T HH:mm:ss -> 2006-01-02 T 15:04:05
  • YYYY/MM/dd HH:mm:ssSSS XXX -> 2006/01/02 15:04:05.000 -07:00

Conversion Functions

Function Example Description
cast cast(col, “bigint”) Converts a value from one data type to another. The supported types includes: bigint, float, string, boolean and datetime.
chr chr(col1) Returns the ASCII character that corresponds to the given Int argument
encode encode(col1, “base64”) Use the encode function to encode the payload, which potentially might be non-JSON data, into its string representation based on the encoding scheme. Currently, only “base64” encoding type is supported.
trunc trunc(dec, int) Truncates the first argument to the number of Decimal places specified by the second argument. If the second argument is less than zero, it is set to zero. If the second argument is greater than 34, it is set to 34. Trailing zeroes are stripped from the result.
object_construct object_construct(key1, col, …) Return a struct type object/map constructed by the arguments. The arguments are series of key value pairs, thus the arguments count must be an odd number. The key must a string and the value can be of any type. If the value is null, the key/value pair will not present in the final object.

Cast to datetime

When casting to datetime type, the supported column type and casting rule are:

  1. If column is datetime type, just return the value.
  2. If column is bigint or float type, the number will be treated as the milliseconds elapsed since January 1, 1970 00:00:00 UTC and converted.
  3. If column is string, it will be parsed to datetime with the default format: "2006-01-02T15:04:05.000Z07:00".
  4. Other types are not supported.

Hashing Functions

Function Example Description
md5 md5(col1) Hashed value of the argument
sha1 sha1(col1) Hashed value of the argument
sha256 sha256(col1) Hashed value of the argument
sha384 sha384(col1) Hashed value of the argument
sha512 sha512(col1) Hashed value of the argument

JSON Functions

Function Example Description
json_path_exists json_path_exists(col1, “$.name”) Checks whether JSON path returns any item for the specified JSON value. Return bool value.
json_path_query json_path_query(col1, “$.name”) Gets all items returned by JSON path for the specified JSON value.
json_path_query_first json_path_query_first(col1, “$.name”) Gets the first item returned by JSON path for the specified JSON value.

Please refer to json path functions for how to compose a json path.

Other Functions

Function Example Description
isNull isNull(col1) Returns true if the argument is the Null value.
cardinality cardinality(col1) The number of members in the group. The null value is 0.
newuuid newuuid() Returns a random 16-byte UUID.
tstamp tstamp() Returns the current timestamp in milliseconds from 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970
mqtt mqtt(topic) Returns the MQTT meta-data of specified key. The current supported keys
- topic: return the topic of message. If there are multiple stream source, then specify the source name in parameter. Such as mqtt(src1.topic)
- messageid: return the message id of message. If there are multiple stream source, then specify the source name in parameter. Such as mqtt(src2.messageid)
meta meta(topic) Returns the meta-data of specified key. The key could be:
- a standalone key if there is only one source in the from clause, such as meta(device)
- A qualified key to specify the stream, such as meta(src1.device)
- A key with arrow for multi level meta data, such as meta(src1.reading->device->name) This assumes reading is a map structure meta data.
window_start window_start() Return the window start timestamp in int64 format. If there is no time window, it returns 0. The window time is aligned with the timestamp notion of the rule. If the rule is using processing time, then the window start timestamp is the processing timestamp. If the rule is using event time, then the window start timestamp is the event timestamp.
window_end window_end() Return the window end timestamp in int64 format. If there is no time window, it returns 0. The window time is aligned with the timestamp notion of the rule. If the rule is using processing time, then the window start timestamp is the processing timestamp. If the rule is using event time, then the window start timestamp is the event timestamp.
changed_col changed_col(true, col) Return the column value if it has changed from the last execution.
had_changed had_changed(true, expr1, expr2, …) Return if any of the columns had changed since the last run. The expression could be * to easily detect the change status of all columns.

Multiple Column Functions

A multiple column function is a function that returns multiple columns. Contrast to normal scalar function, which returns a single column of a single row.

Multiple column function can only be used in the SELECT clause of a query.

Function Example Description
changed_cols changed_cols(prefix, ignoreNull, colA, colB) Return the changed columns whose name are prefixed. Check changed_cols for detail.

Functions to detect changes

Changed_col function

This function is a normal scalar function, so it can be used in any clause including SELECT and WHERE.

Syntax

CHANGED_COL(<ignoreNull>, <expr>)

Arguments

ignoreNull: whether to ignore null values when comparing for changes. If true, the null value won’t emit a change.

expr: An expression to be selected and monitored for the changed status.

Returns

Return the changed value or nil with column name changed_col by default like any other functions. Use as alias to rename the column.

Changed_cols function

This function returns multiple columns, so it is only allowed in the SELECT clause.

Syntax

CHANGED_COLS (<prefix>, <ignoreNull>, <expr> [,...,<exprN>])

Arguments

prefix: The prefix of the selected column name. By default, the selected name will be the same as select the expr directly. For example, CHANGED_COLS("", true, col1) will return col1 as the name. If setting a prefix, the return name will have that prefix. For example, CHANGED_COLS("changed_", true, col1) will return changed_col1 as the name.

ignoreNull: whether to ignore null values when detecting changes. If true, the null value won’t trigger a change.

expr: An expression to be selected and monitored for the changed status. Allow any expression that can be used in select clause. The expression can be a * which will return multiple columns by one expression.

Returns

Return all changed values compared to the previous sink result. So if using in a scalar rule, it will compare to the previous value emit. If using in a window, it will compare to the previous window result.

In the first run, all expressions will be returned because there is no previous result.

In the consequent runs, if nothing changed, it can emit nothing. And if the sink has the default omitEmpty, the sink will not be triggerred.

Notice

The multiple column outputs can only be used in the select clause. Even the selected result cannot be access in WHERE or other place. If filter based on the value is needed, use CHANGED_COL or set the result of multiple column outputs as the prior rule in a rule chain.

For multiple column outputs, the alias can only be set generally with the prefix. To set alias for each column separately, try to call the changed function for each column respectively and use as to set alias.

Had_changed function

This function is a scalar function with one or more arguments.

HAD_CHANGED (<ignoreNull>, <expr> [,...,<exprN>])

Arguments

ignoreNull: whether to ignore null values when detecting changes. If true, the null value won’t trigger a change.

expr: An expression to be monitored for the changed status. Allow any expression that can be used in select clause. The expression can be a * to detect changes of all columns easily.

Returns

Return a bool value to indicate the changed status if any of the arguments had changed since the last run. The multiple arguments’ version is a handy way to check HAD_CHANGED(expr1) OR HAD_CHANGED(expr2) … OR HAD_CHANGED(exprN). To detect other relationship, just use separate HAD_CHANGED functions. For example, to check if all expressions are changed HAD_CHANGED(expr1) AND HAD_CHANGED(expr2) … AND HAD_CHANGED(exprN).

Examples

Create a stream demo and have below inputs

```json lines {“ts”:1, “temperature”:23, “humidity”:88} {“ts”:2, “temperature”:23, “humidity”:88} {“ts”:3, “temperature”:23, “humidity”:88} {“ts”:4, “temperature”:25, “humidity”:88} {“ts”:5, “temperature”:25, “humidity”:90} {“ts”:6, “temperature”:25, “humidity”:91} {“ts”:7, “temperature”:25, “humidity”:91} {“ts”:8, “temperature”:25, “humidity”:91}

  1. Rule to get the changed temperature values:
  2. ```text
  3. SQL: SELECT CHANGED_COLS("", true, temperature) FROM demo
  4. ___________________________________________________
  5. {"temperature":23}
  6. {"temperature":25}

Rule to get the changed temperature and humidity values, and rename the changed value in a unified prefix:

  1. SQL: SELECT CHANGED_COLS("c_", true, temperature, humidity) FROM demo
  2. _________________________________________________________
  3. {"c_ts":1, "c_temperature":23, "c_humidity":88}
  4. {"c_ts":2}
  5. {"c_ts":3}
  6. {"c_ts":4, "c_temperature":25}
  7. {"c_ts":5, "c_humidity":90}
  8. {"c_ts":6, "c_humidity":91}
  9. {"c_ts":7}
  10. {"c_ts":8}

Rule to get the changed values of all columns and do not ignore null:

  1. SQL: SELECT CHANGED_COLS("c_", false, *) FROM demo
  2. _________________________________________________________
  3. {"c_temperature":23,"c_humidity":88}
  4. {"c_temperature":25}
  5. {"c_humidity":90}
  6. {"c_humidity":91}

Rule to get the average value change in a window:

  1. SQL: SELECT CHANGED_COLS("t", true, avg(temperature)) FROM demo GROUP BY CountWindow(2)
  2. _________________________________________________________________
  3. {"tavg":23}
  4. {"tavg":24}
  5. {"tavg":25}

Rule to get the events when temperature or humidity changed:

  1. SQL: SELECT ts, temperature, humidity FROM demo
  2. WHERE HAD_CHANGED(true, temperature, humidity) = true
  3. _________________________________________________________
  4. {"ts":1,temperature":23,"humidity":88}
  5. {"ts":4,temperature":25,"humidity":88}
  6. {"ts":5,temperature":25,"humidity":90}
  7. {"ts":6,temperature":25,"humidity":91}

Rule to get the events when temperature has changed but humidity has NOT changed:

  1. SQL: SELECT ts, temperature, humidity FROM demo
  2. WHERE HAD_CHANGED(true, temperature) = true AND HAD_CHANGED(true, humidity) = false
  3. _________________________________________________________
  4. {"ts":4,temperature":25,"humidity":88}

Rule to get the changed temperature and humidity value with customized names:

  1. SQL: SELECT CHANGED_COL(true, temperature) AS myTemp, CHANGED_COL(true, humidity) AS myHum FROM demo
  2. _________________________________________________________
  3. {"myTemp":23,"myHum":88}
  4. {"myTemp":25}
  5. {"myHum":90}
  6. {"myHum":91}

Rule to get the changed values when the temperature had changed to value bigger than 24:

  1. SQL: SELECT ts, temperature, humidity FROM demo
  2. WHERE CHANGED_COL(true, temperature) > 24
  3. _________________________________________________________
  4. {"ts":4,temperature":25,"humidity":88}