Numerical Types, Functions, and Operators
16-bit integer | |
32-bit integer | |
64-bit integer | |
32-bit floating point number | |
64-bit floating point number | |
Arbitrary precision integer. | |
Arbitrary precision number. | |
Arithmetic addition. | |
Arithmetic subtraction. | |
Arithmetic negation. | |
Arithmetic multiplication. | |
Arithmetic division. | |
Floor division. | |
Remainder from division (modulo). | |
Power operation. | |
Comparison operators | |
Return the sum of the set of numbers. | |
Return the smallest value of the input set. | |
Return the greatest value of the input set. | |
Round to the nearest value. | |
Return a pseudo-random number in the range 0.0 <= x < 1.0. |
Mathematical functions
Return the absolute value of the input x. | |
Round up to the nearest integer. | |
Round down to the nearest integer. | |
Return the natural logarithm of the input value. | |
Return the base 10 logarithm of the input value. | |
Return the logarithm of the input value in the specified base. | |
Return the arithmetic mean of the input set. | |
Return the sample standard deviation of the input set. | |
Return the population standard deviation of the input set. | |
Return the sample variance of the input set. | |
Return the population variance of the input set. |
Bitwise functions
Bitwise AND operator for 2 intergers. | |
Bitwise OR operator for 2 intergers. | |
Bitwise exclusive OR operator for 2 intergers. | |
Bitwise negation operator for 2 intergers. | |
Bitwise left-shift operator for intergers. | |
Bitwise arithemtic right-shift operator for intergers. |
String parsing
Create a bigint value. | |
Create a decimal value. | |
Create an int16 value. | |
Create an int32 value. | |
Create an int64 value. | |
Create a float32 value. | |
Create a float64 value. |
It’s possible to explicitly cast between all numeric types. All numeric types can also be cast to and from str and json.
type
int16
int16
A 16-bit signed integer.
An integer value in range from -32768
to +32767
(inclusive).
type
int32
int32
A 32-bit signed integer.
An integer value in range from -2147483648
to +2147483647
(inclusive).
type
int64
int64
A 64-bit signed integer.
An integer value in range from -9223372036854775808
to +9223372036854775807
(inclusive).
type
float32
float32
A variable precision, inexact number.
Minimal guaranteed precision is at least 6 decimal digits. The approximate range of a float32
is -3.4e+38
to +3.4e+38
.
type
float64
float64
A variable precision, inexact number.
Minimal guaranteed precision is at least 15 decimal digits. The approximate range of a float64
is -1.7e+308
to +1.7e+308
.
type
bigint
bigint
Arbitrary precision integer.
The EdgeDB philosophy is that using bigint type should be an explicit opt-in, but once used, the values should not be accidentally cast into a numeric type with less precision.
In accordance with this the mathematical functions are designed to keep the separation between bigint values and the rest of the numeric types.
All of the following types can be explicitly cast into bigint: str, json, int16, int32, int64, float32, float64, and decimal.
A bigint literal is an integer literal followed by ‘n’:
db>
select 42n is bigint;
{true}
To represent really big integers it is possible to use the exponent notation (e.g. 1e20n
instead of 100000000000000000000n
) as long as the exponent is positive and there is no dot anywhere.
db>
select 1e+100n is bigint;
{true}
When a float literal is followed by ‘n’ it produces a decimal instead:
db>
select 1.23n is decimal;
{true}
db>
select 1.0e+100n is decimal;
{true}
Caution is advised when casting bigint
values into json
. The JSON specification does not have a limit on significant digits, so a bigint
number can be losslessly represented in JSON. However, JSON decoders in many languages will read all such numbers as some kind of 32- or 64-bit number type, which may result in errors or precision loss. If such loss is unacceptable, then consider casting the value into str
and decoding it on the client side into a more appropriate type.
type
decimal
decimal
Any number of arbitrary precision.
The EdgeDB philosophy is that using a decimal type should be an explicit opt-in, but once used, the values should not be accidentally cast into a numeric type with less precision.
In accordance with this the mathematical functions are designed to keep the separation between decimal values and the rest of the numeric types.
All of the following types can be explicitly cast into decimal: str, json, int16, int32, int64, float32, float64, and bigint.
A decimal literal is a float literal followed by ‘n’:
db>
select 1.23n is decimal;
{true}
db>
select 1.0e+100n is decimal;
{true}
Note that an integer literal (without a dot or exponent) followed by ‘n’ produces a bigint. A literal without a dot and with a positive exponent makes a bigint, too:
db>
select 42n is bigint;
{true}
db>
select 12e+34n is bigint;
{true}
Caution is advised when casting decimal
values into json
. The JSON specification does not have a limit on significant digits, so a decimal
number can be losslessly represented in JSON. However, JSON decoders in many languages will read all such numbers as some kind of floating point values, which may result in precision loss. If such loss is unacceptable, then consider casting the value into str
and decoding it on the client side into a more appropriate type.
operator
anyreal + anyreal
anyreal + anyreal -> anyreal
Arithmetic addition.
db>
select 2 + 2;
{4}
operator
anyreal - anyreal
anyreal - anyreal -> anyreal
Arithmetic subtraction.
db>
select 3 - 2;
{1}
operator
-anyreal
- anyreal -> anyreal
Arithmetic negation.
db>
select -5;
{-5}
operator
anyreal * anyreal
anyreal * anyreal -> anyreal
Arithmetic multiplication.
db>
select 2 * 10;
{20}
operator
anyreal / anyreal
anyreal / anyreal -> anyreal
Arithmetic division.
db>
select 10 / 4;
{2.5}
Division by zero results in an error:
db>
select 10 / 0;
DivisionByZeroError: division by zero
operator
anyreal // anyreal
anyreal // anyreal -> anyreal
Floor division.
The result is rounded down to the nearest integer. It is equivalent to using regular division and the applying math::floor() to the result.
db>
select 10 // 4;
{2}
db>
select math::floor(10 / 4);
{2}
db>
select -10 // 4;
{-3}
It also works on float, bigint, and decimal types. The type of the result corresponds to the type of the operands:
db>
select 3.7 // 1.1;
{3.0}
db>
select 3.7n // 1.1n;
{3.0n}
db>
select 37 // 11;
{3}
Regular division, floor division, and % are related in the following way: A // B = (A - (A % B)) / B
.
operator
anyreal % anyreal
anyreal % anyreal -> anyreal
Remainder from division (modulo).
This is the remainder from floor division. Just as is the case with // the result type of the remainder operator corresponds to the operand type:
db>
select 10 % 4;
{2}
db>
select 10n % 4;
{2n}
db>
select -10 % 4;
{2}
db>
...
...
# floating arithmetic is inexact, so
# we get 0.3999999999999999 instead of 0.4
select 3.7 % 1.1;
{0.3999999999999999}
db>
select 3.7n % 1.1n;
{0.4n}
db>
select 37 % 11;
{4}
Regular division, // and % are related in the following way: A // B = (A - (A % B)) / B
.
Modulo division by zero results in an error:
db>
select 10 % 0;
DivisionByZeroError: division by zero
operator
anyreal ^ anyreal
anyreal ^ anyreal -> anyreal
Power operation.
db>
select 2 ^ 4;
{16}
function
round()
std::round(value: int64) -> float64std::round(value: float64) -> float64std::round(value: bigint) -> bigintstd::round(value: decimal) -> decimalstd::round(value: decimal, d: int64) -> decimal
Round to the nearest value.
There’s a difference in how ties (which way 0.5
is rounded) are handled depending on the type of the input value.
float64 tie is rounded to the nearest even number:
db>
select round(1.2);
{1}
db>
select round(1.5);
{2}
db>
select round(2.5);
{2}
decimal tie is rounded away from 0:
db>
select round(1.2n);
{1n}
db>
select round(1.5n);
{2n}
db>
select round(2.5n);
{3n}
Additionally, when rounding a decimal value an optional argument d can be provided to specify to what decimal point the value must to be rounded.
db>
select round(163.278n, 2);
{163.28n}
db>
select round(163.278n, 1);
{163.3n}
db>
select round(163.278n, 0);
{163n}
db>
select round(163.278n, -1);
{160n}
db>
select round(163.278n, -2);
{200n}
function
random()
std::random() -> float64
Return a pseudo-random number in the range 0.0 <= x < 1.0
.
db>
select random();
{0.62649393780157}
function
bit_and()
std::bit_and(l: int16, r: int16) -> int16std::bit_and(l: int32, r: int32) -> int32std::bit_and(l: int64, r: int64) -> int64
Bitwise AND operator for 2 intergers.
db>
select bit_and(17, 3);
{1}
function
bit_or()
std::bit_or(l: int16, r: int16) -> int16std::bit_or(l: int32, r: int32) -> int32std::bit_or(l: int64, r: int64) -> int64
Bitwise OR operator for 2 intergers.
db>
select bit_or(17, 3);
{19}
function
bit_xor()
std::bit_xor(l: int16, r: int16) -> int16std::bit_xor(l: int32, r: int32) -> int32std::bit_xor(l: int64, r: int64) -> int64
Bitwise exclusive OR operator for 2 intergers.
db>
select bit_xor(17, 3);
{18}
function
bit_not()
std::bit_not(r: int16) -> int16std::bit_not(r: int32) -> int32std::bit_not(r: int64) -> int64
Bitwise negation operator for 2 intergers.
Bitwise negation for integers ends up similar to mathematical negation because typically the signed integers use “two’s complement” representation. In this represenation mathematical negation is achieved by aplying bitwise negation and adding 1
.
db>
select bit_not(17);
{-18}
db>
select -17 = bit_not(17) + 1;
{true}
function
bit_lshift()
std::bit_lshift(val: int16, n: int64) -> int16std::bit_lshift(val: int32, n: int64) -> int32std::bit_lshift(val: int64, n: int64) -> int64
Bitwise left-shift operator for intergers.
The integer val is shifted by n bits to the left. The rightmost added bits are all 0
. Shifting an integer by a number of bits larger than the bit size of the integer results in 0
.
db>
select bit_lshift(123, 2);
{492}
db>
select bit_lshift(123, 65);
{0}
It is possible to affect the sign bit by left-shifting an integer.
db>
select bit_lshift(123, 60);
{-5764607523034234880}
In general left-shifting an integer in small increments produces the same result as shifting it in one step.
db>
select bit_lshift(bit_lshift(123, 1), 3);
{1968}
db>
select bit_lshift(123, 4);
{1968}
It is an error to attempt to shift by a negative number of bits.
db>
select bit_lshift(123, -2);
edgedb error: InvalidValueError: bit_lshift(): cannot shift by
negative amount
function
bit_rshift()
std::bit_rshift(val: int16, n: int64) -> int16std::bit_rshift(val: int32, n: int64) -> int32std::bit_rshift(val: int64, n: int64) -> int64
Bitwise arithemtic right-shift operator for intergers.
The integer val is shifted by n bits to the right. In the arithmetic right-shift the sign is preserved. This means that the leftmost added bits are 1
or 0
depending on the sign bit. Shifting an integer by a number of bits larger than the bit size of the integer results in 0
for positive numbers and -1
for negative numbers.
db>
select bit_rshift(123, 2);
{30}
db>
select bit_rshift(123, 65);
{0}
db>
select bit_rshift(-123, 2);
{-31}
db>
select bit_rshift(-123, 65);
{-1}
In general right-shifting an integer in small increments produces the same result as shifting it in one step.
db>
select bit_rshift(bit_rshift(123, 1), 3);
{7}
db>
select bit_rshift(123, 4);
{7}
db>
select bit_rshift(bit_rshift(-123, 1), 3);
{-8}
db>
select bit_rshift(-123, 4);
{-8}
It is an error to attempt to shift by a negative number of bits.
db>
select bit_rshift(123, -2);
edgedb error: InvalidValueError: bit_rshift(): cannot shift by
negative amount
function
to_bigint()
std::to_bigint(s: str, fmt: optional str={}) -> bigint
Create a bigint value.
Parse a bigint from the input s and optional format specification fmt.
db>
select to_bigint('-000,012,345', 'S099,999,999,999');
{-12345n}
db>
select to_bigint('31st', '999th');
{31n}
For more details on formatting see here.
function
to_decimal()
std::to_decimal(s: str, fmt: optional str={}) -> decimal
Create a decimal value.
Parse a decimal from the input s and optional format specification fmt.
db>
select to_decimal('-000,012,345', 'S099,999,999,999');
{-12345.0n}
db>
select to_decimal('-012.345');
{-12.345n}
db>
select to_decimal('31st', '999th');
{31.0n}
For more details on formatting see here.
function
to_int16()
std::to_int16(s: str, fmt: optional str={}) -> int16
Create an int16 value.
Parse an int16 from the input s and optional format specification fmt.
For more details on formatting see here.
function
to_int32()
std::to_int32(s: str, fmt: optional str={}) -> int32
Create an int32 value.
Parse an int32 from the input s and optional format specification fmt.
For more details on formatting see here.
function
to_int64()
std::to_int64(s: str, fmt: optional str={}) -> int64
Create an int64 value.
Parse an int64 from the input s and optional format specification fmt.
For more details on formatting see here.
function
to_float32()
std::to_float32(s: str, fmt: optional str={}) -> float32
Create a float32 value.
Parse a float32 from the input s and optional format specification fmt.
For more details on formatting see here.
function
to_float64()
std::to_float64(s: str, fmt: optional str={}) -> float64
Create a float64 value.
Parse a float64 from the input s and optional format specification fmt.
For more details on formatting see here.