作为一种全新的开放式的数据管理架构,湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。

在过去多个版本中,Apache Doris 持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。

  • 自 0.15 版本起,Apache Doris 引入 Hive 和 Iceberg 外部表,尝试在 Apache Iceberg 之上探索与数据湖的能力结合。
  • 自 1.2 版本起,Apache Doris 正式引入 Multi-Catalog 功能,实现了多种数据源的自动元数据映射和数据访问、并对外部数据读取和查询执行等方面做了诸多性能优化,完全具备了构建极速易用 Lakehouse 架构的能力。
  • 在 2.1 版本中,Apache Doris 湖仓一体架构得到全面加强,不仅增强了主流数据湖格式(Hudi、Iceberg、Paimon 等)的读取和写入能力,还引入了多 SQL 方言兼容、可从原有系统无缝切换至 Apache Doris。在数据科学及大规模数据读取场景上,Doris 集成了 Arrow Flight 高速读取接口,使得数据传输效率实现 100 倍的提升。

使用 Doris 和 Hudi 构建 Lakehouse

Apache Doris & Hudi

Apache Hudi 是目前最主流的开放数据湖格式之一,也是事务性的数据湖管理平台,支持包括 Apache Doris 在内的多种主流查询引擎。

Apache Doris 同样对 Apache Hudi 数据表的读取能力进行了增强:

  • 支持 Copy on Write Table:Snapshot Query
  • 支持 Merge on Read Table:Snapshot Queries, Read Optimized Queries
  • 支持 Time Travel
  • 支持 Incremental Read

凭借 Apache Doris 的高性能查询执行以及 Apache Hudi 的实时数据管理能力,可以实现高效、灵活、低成本的数据查询和分析,同时也提供了强大的数据回溯、审计和增量处理功能,当前基于 Apache Doris 和 Apache Hudi 的组合已经在多个社区用户的真实业务场景中得到验证和推广:

  • 实时数据分析与处理:比如金融行业交易分析、广告行业实时点击流分析、电商行业用户行为分析等常见场景下,都要求实时的数据更新及查询分析。Hudi 能够实现对数据的实时更新和管理,并保证数据的一致性和可靠性,Doris 则能够实时高效处理大规模数据查询请求,二者结合能够充分满足实时数据分析与处理的需求。
  • 数据回溯与审计:对于金融、医疗等对数据安全和准确性要求极高的行业来说,数据回溯和审计是非常重要的功能。Hudi 提供了时间旅行(Time Travel)功能,允许用户查看历史数据状态,结合 Apache Doris 高效查询能力,可快速查找分析任何时间点的数据,实现精确的回溯和审计。
  • 增量数据读取与分析:在进行大数据分析时往往面临着数据规模庞大、更新频繁的问题,Hudi 支持增量数据读取,这使得用户可以只需处理变化的数据,不必进行全量数据更新;同时 Apache Doris 的 Incremental Read 功能也可使这一过程更加高效,显著提升了数据处理和分析的效率。
  • 跨数据源联邦查询:许多企业数据来源复杂,数据可能存储在不同的数据库中。Doris 的 Multi-Catalog 功能支持多种数据源的自动映射与同步,支持跨数据源的联邦查询。这对于需要从多个数据源中获取和整合数据进行分析的企业来说,极大地缩短了数据流转路径,提升了工作效率。

本文将在 Docker 环境下,为读者介绍如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境,并对各功能操作进行演示,帮助读者快速入门。

关于更多说明,请参阅 Hudi Catalog

使用指南

本文涉及所有脚本和代码可以从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/hudi

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

组件名称版本
Apache Doris默认 2.1.4,可修改
Apache Hudi0.14
Apache Spark3.4.2
Apache Hive2.1.3
MinIO2022-05-26T05-48-41Z

02 环境部署

  1. 创建 Docker 网络

    sudo docker network create -d bridge hudi-net

  2. 启动所有组件

    sudo ./start-hudi-compose.sh

    注:启动前,可将 start-hudi-compose.sh 中的 DORIS_PACKAGEDORIS_DOWNLOAD_URL 修改成需要的 Doris 版本。建议使用 2.1.4 或更高版本。

  3. 启动后,可以使用如下脚本,登陆 Spark 命令行或 Doris 命令行:

    1. -- Doris
    2. sudo ./login-spark.sh
    3. -- Spark
    4. sudo ./login-doris.sh

03 数据准备

接下来先通过 Spark 生成 Hudi 的数据。如下方代码所示,集群中已经包含一张名为 customer 的 Hive 表,可以通过这张 Hive 表,创建一个 Hudi 表:

  1. -- ./login-spark.sh
  2. spark-sql> use default;
  3. -- create a COW table
  4. spark-sql> CREATE TABLE customer_cow
  5. USING hudi
  6. TBLPROPERTIES (
  7. type = 'cow',
  8. primaryKey = 'c_custkey',
  9. preCombineField = 'c_name'
  10. )
  11. PARTITIONED BY (c_nationkey)
  12. AS SELECT * FROM customer;
  13. -- create a MOR table
  14. spark-sql> CREATE TABLE customer_mor
  15. USING hudi
  16. TBLPROPERTIES (
  17. type = 'mor',
  18. primaryKey = 'c_custkey',
  19. preCombineField = 'c_name'
  20. )
  21. PARTITIONED BY (c_nationkey)
  22. AS SELECT * FROM customer;

04 数据查询

如下所示,Doris 集群中已经创建了名为 hudi 的 Catalog(可通过 SHOW CATALOGS 查看)。以下为该 Catalog 的创建语句:

  1. -- 已经创建,无需再次执行
  2. CREATE CATALOG `hive` PROPERTIES (
  3. "type"="hms",
  4. 'hive.metastore.uris' = 'thrift://hive-metastore:9083',
  5. "s3.access_key" = "minio",
  6. "s3.secret_key" = "minio123",
  7. "s3.endpoint" = "http://minio:9000",
  8. "s3.region" = "us-east-1",
  9. "use_path_style" = "true"
  10. );
  1. 手动刷新该 Catalog,对创建的 Hudi 表进行同步:

    1. -- ./login-doris.sh
    2. doris> REFRESH CATALOG hive;
  2. 使用 Spark 操作 Hudi 中的数据,都可以在 Doris 中实时可见,不需要再次刷新 Catalog。我们通过 Spark 分别给 COW 和 MOR 表插入一行数据:

    1. spark-sql> insert into customer_cow values (100, "Customer#000000100", "jD2xZzi", "25-430-914-2194", 3471.59, "BUILDING", "cial ideas. final, furious requests", 25);
    2. spark-sql> insert into customer_mor values (100, "Customer#000000100", "jD2xZzi", "25-430-914-2194", 3471.59, "BUILDING", "cial ideas. final, furious requests", 25);
  3. 通过 Doris 可以直接查询到最新插入的数据:

    1. doris> use hive.default;
    2. doris> select * from customer_cow where c_custkey = 100;
    3. doris> select * from customer_mor where c_custkey = 100;
  4. 再通过 Spark 插入 c_custkey=32 已经存在的数据,即覆盖已有数据:

    1. spark-sql> insert into customer_cow values (32, "Customer#000000032_update", "jD2xZzi", "25-430-914-2194", 3471.59, "BUILDING", "cial ideas. final, furious requests", 15);
    2. spark-sql> insert into customer_mor values (32, "Customer#000000032_update", "jD2xZzi", "25-430-914-2194", 3471.59, "BUILDING", "cial ideas. final, furious requests", 15);
  5. 通过 Doris 可以查询更新后的数据:

    1. doris> select * from customer_cow where c_custkey = 32;
    2. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
    3. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
    4. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
    5. | 32 | Customer#000000032_update | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 15 |
    6. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
    7. doris> select * from customer_mor where c_custkey = 32;
    8. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
    9. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
    10. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
    11. | 32 | Customer#000000032_update | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 15 |
    12. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+

05 Incremental Read

Incremental Read 是 Hudi 提供的功能特性之一,通过 Incremental Read,用户可以获取指定时间范围的增量数据,从而实现对数据的增量处理。对此,Doris 可对插入 c_custkey=100 后的变更数据进行查询。如下所示,我们插入了一条 c_custkey=32 的数据:

  1. doris> select * from customer_cow@incr('beginTime'='20240603015018572');
  2. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  3. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
  4. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  5. | 32 | Customer#000000032_update | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 15 |
  6. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  7. spark-sql> select * from hudi_table_changes('customer_cow', 'latest_state', '20240603015018572');
  8. doris> select * from customer_mor@incr('beginTime'='20240603015058442');
  9. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  10. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
  11. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  12. | 32 | Customer#000000032_update | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 15 |
  13. +-----------+---------------------------+-----------+-----------------+-----------+--------------+-------------------------------------+-------------+
  14. spark-sql> select * from hudi_table_changes('customer_mor', 'latest_state', '20240603015058442');

06 TimeTravel

Doris 支持查询指定快照版本的 Hudi 数据,从而实现对数据的 Time Travel 功能。首先,可以通过 Spark 查询两张 Hudi 表的提交历史:

  1. spark-sql> call show_commits(table => 'customer_cow', limit => 10);
  2. 20240603033556094 20240603033558249 commit 448833 0 1 1 183 0 0
  3. 20240603015444737 20240603015446588 commit 450238 0 1 1 202 1 0
  4. 20240603015018572 20240603015020503 commit 436692 1 0 1 1 0 0
  5. 20240603013858098 20240603013907467 commit 44902033 100 0 25 18751 0 0
  6. spark-sql> call show_commits(table => 'customer_mor', limit => 10);
  7. 20240603033745977 20240603033748021 deltacommit 1240 0 1 1 0 0 0
  8. 20240603015451860 20240603015453539 deltacommit 1434 0 1 1 1 1 0
  9. 20240603015058442 20240603015100120 deltacommit 436691 1 0 1 1 0 0
  10. 20240603013918515 20240603013922961 deltacommit 44904040 100 0 25 18751 0 0

接着,可通过 Doris 执行 c_custkey=32 ,查询数据插入之前的数据快照。如下可看到 c_custkey=32 的数据还未更新:

注:Time Travel 语法暂时不支持新优化器,需要先执行 set enable_nereids_planner=false;关闭新优化器,该问题将会在后续版本中修复。

  1. doris> select * from customer_cow for time as of '20240603015018572' where c_custkey = 32 or c_custkey = 100;
  2. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  3. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
  4. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  5. | 32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J | 25-430-914-2194 | 3471.53 | BUILDING | cial ideas. final, furious requests across the e | 15 |
  6. | 100 | Customer#000000100 | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 25 |
  7. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  8. -- compare with spark-sql
  9. spark-sql> select * from customer_mor timestamp as of '20240603015018572' where c_custkey = 32 or c_custkey = 100;
  10. doris> select * from customer_mor for time as of '20240603015058442' where c_custkey = 32 or c_custkey = 100;
  11. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  12. | c_custkey | c_name | c_address | c_phone | c_acctbal | c_mktsegment | c_comment | c_nationkey |
  13. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  14. | 100 | Customer#000000100 | jD2xZzi | 25-430-914-2194 | 3471.59 | BUILDING | cial ideas. final, furious requests | 25 |
  15. | 32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J | 25-430-914-2194 | 3471.53 | BUILDING | cial ideas. final, furious requests across the e | 15 |
  16. +-----------+--------------------+---------------------------------------+-----------------+-----------+--------------+--------------------------------------------------+-------------+
  17. spark-sql> select * from customer_mor timestamp as of '20240603015058442' where c_custkey = 32 or c_custkey = 100;

查询优化

Apache Hudi 中的数据大致可以分为两类 —— 基线数据和增量数据。基线数据通常是已经经过合并的 Parquet 文件,而增量数据是指由 INSERT、UPDATE 或 DELETE 产生的数据增量。基线数据可以直接读取,增量数据需要通过 Merge on Read 的方式进行读取。

对于 Hudi COW 表的查询或者 MOR 表的 Read Optimized 查询而言,其数据都属于基线数据,可直接通过 Doris 原生的 Parquet Reader 读取数据文件,且可获得极速的查询响应。而对于增量数据,Doris 需要通过 JNI 调用 Hudi 的 Java SDK 进行访问。为了达到最优的查询性能,Apache Doris 在查询时,会将一个查询中的数据分为基线和增量数据两部分,并分别使用上述方式进行读取。

为验证该优化思路,我们通过 EXPLAIN 语句来查看一个下方示例的查询中,分别有多少基线数据和增量数据。对于 COW 表来说,所有 101 个数据分片均为是基线数据(hudiNativeReadSplits=101/101),因此 COW 表全部可直接通过 Doris Parquet Reader 进行读取,因此可获得最佳的查询性能。对于 ROW 表,大部分数据分片是基线数据(hudiNativeReadSplits=100/101),一个分片数为增量数据,基本也能够获得较好的查询性能。

  1. -- COW table is read natively
  2. doris> explain select * from customer_cow where c_custkey = 32;
  3. | 0:VHUDI_SCAN_NODE(68) |
  4. | table: customer_cow |
  5. | predicates: (c_custkey[#5] = 32) |
  6. | inputSplitNum=101, totalFileSize=45338886, scanRanges=101 |
  7. | partition=26/26 |
  8. | cardinality=1, numNodes=1 |
  9. | pushdown agg=NONE |
  10. | hudiNativeReadSplits=101/101 |
  11. -- MOR table: because only the base file contains `c_custkey = 32` that is updated, 100 splits are read natively, while the split with log file is read by JNI.
  12. doris> explain select * from customer_mor where c_custkey = 32;
  13. | 0:VHUDI_SCAN_NODE(68) |
  14. | table: customer_mor |
  15. | predicates: (c_custkey[#5] = 32) |
  16. | inputSplitNum=101, totalFileSize=45340731, scanRanges=101 |
  17. | partition=26/26 |
  18. | cardinality=1, numNodes=1 |
  19. | pushdown agg=NONE |
  20. | hudiNativeReadSplits=100/101 |

可以通过 Spark 进行一些删除操作,进一步观察 Hudi 基线数据和增量数据的变化:

  1. -- Use delete statement to see more differences
  2. spark-sql> delete from customer_cow where c_custkey = 64;
  3. doris> explain select * from customer_cow where c_custkey = 64;
  4. spark-sql> delete from customer_mor where c_custkey = 64;
  5. doris> explain select * from customer_mor where c_custkey = 64;

此外,还可以通过分区条件进行分区裁剪,从而进一步减少数据量,以提升查询速度。如下示例中,通过分区条件 c_nationkey=15 进行分区裁减,使得查询请求只需要访问一个分区(partition=1/26)的数据即可。

  1. -- customer_xxx is partitioned by c_nationkey, we can use the partition column to prune data
  2. doris> explain select * from customer_mor where c_custkey = 64 and c_nationkey = 15;
  3. | 0:VHUDI_SCAN_NODE(68) |
  4. | table: customer_mor |
  5. | predicates: (c_custkey[#5] = 64), (c_nationkey[#12] = 15) |
  6. | inputSplitNum=4, totalFileSize=1798186, scanRanges=4 |
  7. | partition=1/26 |
  8. | cardinality=1, numNodes=1 |
  9. | pushdown agg=NONE |
  10. | hudiNativeReadSplits=3/4 |