外表统计信息

外表统计信息的收集方式和收集内容与内表基本一致,详细信息可以参考内表统计信息。目前支持对Hive,Iceberg和Hudi等外部表的收集。

外表暂不支持的功能包括

  1. 暂不支持直方图收集
  2. 暂不支持分区的增量收集和更新
  3. 暂不支持自动收集(with auto),用户可以使用周期性收集(with period)来代替
  4. 暂不支持抽样收集

下面主要介绍一下外表统计信息收集的示例和实现原理。

使用示例

这里主要展示在Doris中通过执行analyze命令收集外表统计信息的相关示例。除了上文提到的外表暂不支持的4个功能,其余和内表使用方式相同。下面以hive.tpch100数据库为例进行展示。tpch100数据库中包含lineitem,orders,region等8张表。

信息收集

外表支持手动一次性收集和周期性收集两种收集方式。

手动一次性收集

  • 收集lineitem表的表信息以及全部列的信息:
  1. mysql> ANALYZE TABLE hive.tpch100.lineitem;
  2. +--------------+-------------------------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  3. | Catalog_Name | DB_Name | Table_Name | Columns | Job_Id |
  4. +--------------+-------------------------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  5. | hive | default_cluster:tpch100 | lineitem | [l_returnflag,l_receiptdate,l_tax,l_shipmode,l_suppkey,l_shipdate,l_commitdate,l_partkey,l_orderkey,l_quantity,l_linestatus,l_comment,l_extendedprice,l_linenumber,l_discount,l_shipinstruct] | 16990 |
  6. +--------------+-------------------------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  7. 1 row in set (0.06 sec)

此操作是异步执行,会在后台创建收集任务,可以通过job_id查看任务进度。

  1. mysql> SHOW ANALYZE 16990;
  2. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+---------+---------------------------------------------+---------------+
  3. | job_id | catalog_name | db_name | tbl_name | col_name | job_type | analysis_type | message | last_exec_time_in_ms | state | progress | schedule_type |
  4. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+---------+---------------------------------------------+---------------+
  5. | 16990 | hive | default_cluster:tpch100 | lineitem | [l_returnflag,l_receiptdate,l_tax,l_shipmode,l_suppkey,l_shipdate,l_commitdate,l_partkey,l_orderkey,l_quantity,l_linestatus,l_comment,l_extendedprice,l_linenumber,l_discount,l_shipinstruct] | MANUAL | FUNDAMENTALS | | 2023-07-27 16:01:52 | RUNNING | 2 Finished/0 Failed/15 In Progress/17 Total | ONCE |
  6. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+---------+---------------------------------------------+---------------+
  7. 1 row in set (0.00 sec)

以及查看每一列的task状态。

  1. mysql> SHOW ANALYZE TASK STATUS 16990;
  2. +---------+-----------------+---------+------------------------+-----------------+----------+
  3. | task_id | col_name | message | last_state_change_time | time_cost_in_ms | state |
  4. +---------+-----------------+---------+------------------------+-----------------+----------+
  5. | 16991 | l_receiptdate | | 2023-07-27 16:01:29 | 0 | PENDING |
  6. | 16992 | l_returnflag | | 2023-07-27 16:01:44 | 14394 | FINISHED |
  7. | 16993 | l_tax | | 2023-07-27 16:01:52 | 7975 | FINISHED |
  8. | 16994 | l_shipmode | | 2023-07-27 16:02:11 | 18961 | FINISHED |
  9. | 16995 | l_suppkey | | 2023-07-27 16:02:17 | 6684 | FINISHED |
  10. | 16996 | l_shipdate | | 2023-07-27 16:02:26 | 8518 | FINISHED |
  11. | 16997 | l_commitdate | | 2023-07-27 16:02:26 | 0 | RUNNING |
  12. | 16998 | l_partkey | | 2023-07-27 16:01:29 | 0 | PENDING |
  13. | 16999 | l_quantity | | 2023-07-27 16:01:29 | 0 | PENDING |
  14. | 17000 | l_orderkey | | 2023-07-27 16:01:29 | 0 | PENDING |
  15. | 17001 | l_comment | | 2023-07-27 16:01:29 | 0 | PENDING |
  16. | 17002 | l_linestatus | | 2023-07-27 16:01:29 | 0 | PENDING |
  17. | 17003 | l_extendedprice | | 2023-07-27 16:01:29 | 0 | PENDING |
  18. | 17004 | l_linenumber | | 2023-07-27 16:01:29 | 0 | PENDING |
  19. | 17005 | l_shipinstruct | | 2023-07-27 16:01:29 | 0 | PENDING |
  20. | 17006 | l_discount | | 2023-07-27 16:01:29 | 0 | PENDING |
  21. | 17007 | TableRowCount | | 2023-07-27 16:01:29 | 0 | PENDING |
  22. +---------+-----------------+---------+------------------------+-----------------+----------+
  23. 17 rows in set (0.00 sec)
  • 收集tpch100数据库所有表的信息
  1. mysql> ANALYZE DATABASE hive.tpch100;
  2. +--------------+---------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  3. | Catalog_Name | DB_Name | Table_Name | Columns | Job_Id |
  4. +--------------+---------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  5. | hive | tpch100 | supplier | [s_comment,s_phone,s_nationkey,s_name,s_address,s_acctbal,s_suppkey] | 17018 |
  6. | hive | tpch100 | nation | [n_comment,n_nationkey,n_regionkey,n_name] | 17027 |
  7. | hive | tpch100 | region | [r_regionkey,r_comment,r_name] | 17033 |
  8. | hive | tpch100 | partsupp | [ps_suppkey,ps_availqty,ps_comment,ps_partkey,ps_supplycost] | 17038 |
  9. | hive | tpch100 | orders | [o_orderstatus,o_clerk,o_orderdate,o_shippriority,o_custkey,o_totalprice,o_orderkey,o_comment,o_orderpriority] | 17045 |
  10. | hive | tpch100 | lineitem | [l_returnflag,l_receiptdate,l_tax,l_shipmode,l_suppkey,l_shipdate,l_commitdate,l_partkey,l_orderkey,l_quantity,l_linestatus,l_comment,l_extendedprice,l_linenumber,l_discount,l_shipinstruct] | 17056 |
  11. | hive | tpch100 | part | [p_partkey,p_container,p_name,p_comment,p_brand,p_type,p_retailprice,p_mfgr,p_size] | 17074 |
  12. | hive | tpch100 | customer | [c_custkey,c_phone,c_acctbal,c_mktsegment,c_address,c_nationkey,c_name,c_comment] | 17085 |
  13. +--------------+---------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
  14. 8 rows in set (0.29 sec)

此操作会批量提交tpch100数据库下所有表的收集任务,也是异步执行,会给每个表创建一个job_id,也可以通过job_id查看每张表的任务进度。

  • 同步收集

可以使用with sync同步收集表或数据库的统计信息。这时不会创建后台任务,客户端在收集完成之前会block住,直到收集任务执行完成再返回。

  1. mysql> analyze table hive.tpch100.orders with sync;
  2. Query OK, 0 rows affected (33.19 sec)

需要注意的是,同步收集受query_timeout session变量影响,如果超时失败,需要调大该变量后重试。比如: set query_timeout=3600 (超时时间设置为1小时)

周期性收集

使用with period可以设置周期性的执行收集任务:

analyze table hive.tpch100.orders with period 86400;

这条语句创建一个周期性收集的任务,周期是1天,每天自动收集和更新orders表的统计信。

任务管理

任务管理的方式也和内表相同,主要包括查看job,查看task,删除job等功能。请参考内表统计信息任务管理部分。

  • 查看所有job状态
  1. mysql> SHOW ANALYZE;
  2. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+----------+---------------------------------------------+---------------+
  3. | job_id | catalog_name | db_name | tbl_name | col_name | job_type | analysis_type | message | last_exec_time_in_ms | state | progress | schedule_type |
  4. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+----------+---------------------------------------------+---------------+
  5. | 16990 | hive | default_cluster:tpch100 | lineitem | [l_returnflag,l_receiptdate,l_tax,l_shipmode,l_suppkey,l_shipdate,l_commitdate,l_partkey,l_orderkey,l_quantity,l_linestatus,l_comment,l_extendedprice,l_linenumber,l_discount,l_shipinstruct] | MANUAL | FUNDAMENTALS | | 2023-07-27 16:05:02 | FINISHED | 17 Finished/0 Failed/0 In Progress/17 Total | ONCE |
  6. +--------+--------------+-------------------------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+---------+----------------------+----------+---------------------------------------------+---------------+
  • 查看一个job的所有task状态
  1. mysql> SHOW ANALYZE TASK STATUS 16990;
  2. +---------+-----------------+---------+------------------------+-----------------+----------+
  3. | task_id | col_name | message | last_state_change_time | time_cost_in_ms | state |
  4. +---------+-----------------+---------+------------------------+-----------------+----------+
  5. | 16991 | l_receiptdate | | 2023-07-27 16:05:02 | 9560 | FINISHED |
  6. | 16992 | l_returnflag | | 2023-07-27 16:01:44 | 14394 | FINISHED |
  7. | 16993 | l_tax | | 2023-07-27 16:01:52 | 7975 | FINISHED |
  8. | 16994 | l_shipmode | | 2023-07-27 16:02:11 | 18961 | FINISHED |
  9. | 16995 | l_suppkey | | 2023-07-27 16:02:17 | 6684 | FINISHED |
  10. | 16996 | l_shipdate | | 2023-07-27 16:02:26 | 8518 | FINISHED |
  11. | 16997 | l_commitdate | | 2023-07-27 16:02:34 | 8380 | FINISHED |
  12. | 16998 | l_partkey | | 2023-07-27 16:02:40 | 6060 | FINISHED |
  13. | 16999 | l_quantity | | 2023-07-27 16:02:50 | 9768 | FINISHED |
  14. | 17000 | l_orderkey | | 2023-07-27 16:02:57 | 7200 | FINISHED |
  15. | 17001 | l_comment | | 2023-07-27 16:03:36 | 38468 | FINISHED |
  16. | 17002 | l_linestatus | | 2023-07-27 16:03:51 | 15226 | FINISHED |
  17. | 17003 | l_extendedprice | | 2023-07-27 16:04:00 | 8713 | FINISHED |
  18. | 17004 | l_linenumber | | 2023-07-27 16:04:06 | 6659 | FINISHED |
  19. | 17005 | l_shipinstruct | | 2023-07-27 16:04:36 | 29777 | FINISHED |
  20. | 17006 | l_discount | | 2023-07-27 16:04:45 | 9212 | FINISHED |
  21. | 17007 | TableRowCount | | 2023-07-27 16:04:52 | 6974 | FINISHED |
  22. +---------+-----------------+---------+------------------------+-----------------+----------+
  • 终止未完成的job
  1. KILL ANALYZE [job_id]
  • 删除周期性收集job
  1. DROP ANALYZE JOB [JOB_ID]

信息查看

信息的查看包括表的统计信息(表的行数)查看和列统计信息查看,请参考内表统计信息查看统计信息部分。

表统计信息

  1. SHOW TALBE [cached] stats TABLE_NAME;

查看statistics表中指定table的行数,如果指定cached参数,则展示的是指定表已加载到缓存中的行数信息。

  1. mysql> SHOW TABLE STATS hive.tpch100.orders;
  2. +-----------+---------------------+---------------------+
  3. | row_count | update_time | last_analyze_time |
  4. +-----------+---------------------+---------------------+
  5. | 150000000 | 2023-07-11 23:01:49 | 2023-07-11 23:01:44 |
  6. +-----------+---------------------+---------------------+

列统计信息

  1. SHOW COLUMN [cached] stats TABLE_NAME;

查看statistics表中指定table的列统计信息,如果指定cached参数,则展示的是指定表已加载到缓存中的列信息。

  1. mysql> SHOW COLUMN stats hive.tpch100.orders;
  2. +-----------------+-------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+
  3. | column_name | count | ndv | num_null | data_size | avg_size_byte | min | max |
  4. +-----------------+-------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+
  5. | o_orderstatus | 1.5E8 | 3.0 | 0.0 | 1.50000001E8 | 1.0 | 'F' | 'P' |
  6. | o_clerk | 1.5E8 | 100836.0 | 0.0 | 2.250000015E9 | 15.0 | 'Clerk#000000001' | 'Clerk#000100000' |
  7. | o_orderdate | 1.5E8 | 2417.0 | 0.0 | 6.00000004E8 | 4.0 | '1992-01-01' | '1998-08-02' |
  8. | o_shippriority | 1.5E8 | 1.0 | 0.0 | 6.00000004E8 | 4.0 | 0 | 0 |
  9. | o_custkey | 1.5E8 | 1.0023982E7 | 0.0 | 6.00000004E8 | 4.0 | 1 | 14999999 |
  10. | o_totalprice | 1.5E8 | 3.4424096E7 | 0.0 | 1.200000008E9 | 8.0 | 811.73 | 591036.15 |
  11. | o_orderkey | 1.5E8 | 1.51621184E8 | 0.0 | 1.200000008E9 | 8.0 | 1 | 600000000 |
  12. | o_comment | 1.5E8 | 1.10204136E8 | 0.0 | 7.275038757500258E9 | 48.50025806 | ' Tiresias about the' | 'zzle? unusual requests w' |
  13. | o_orderpriority | 1.5E8 | 5.0 | 0.0 | 1.2600248124001656E9 | 8.40016536 | '1-URGENT' | '5-LOW' |
  14. +-----------------+-------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+

信息修改

修改信息支持用户手动修改列统计信息。可以修改指定列的row_count, ndv, num_nulls, min_value, max_value, data_size等信息。 请参考内表统计信息修改统计信息部分。

  1. mysql> ALTER TABLE hive.tpch100.orders MODIFY COLUMN o_orderstatus SET STATS ('row_count'='6001215');
  2. Query OK, 0 rows affected (0.03 sec)
  3. mysql> SHOW COLUMN stats hive.tpch100.orders;
  4. +-----------------+-----------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+
  5. | column_name | count | ndv | num_null | data_size | avg_size_byte | min | max |
  6. +-----------------+-----------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+
  7. | o_orderstatus | 6001215.0 | 0.0 | 0.0 | 0.0 | 0.0 | 'NULL' | 'NULL' |
  8. | o_clerk | 1.5E8 | 100836.0 | 0.0 | 2.250000015E9 | 15.0 | 'Clerk#000000001' | 'Clerk#000100000' |
  9. | o_orderdate | 1.5E8 | 2417.0 | 0.0 | 6.00000004E8 | 4.0 | '1992-01-01' | '1998-08-02' |
  10. | o_shippriority | 1.5E8 | 1.0 | 0.0 | 6.00000004E8 | 4.0 | 0 | 0 |
  11. | o_custkey | 1.5E8 | 1.0023982E7 | 0.0 | 6.00000004E8 | 4.0 | 1 | 14999999 |
  12. | o_totalprice | 1.5E8 | 3.4424096E7 | 0.0 | 1.200000008E9 | 8.0 | 811.73 | 591036.15 |
  13. | o_orderkey | 1.5E8 | 1.51621184E8 | 0.0 | 1.200000008E9 | 8.0 | 1 | 600000000 |
  14. | o_comment | 1.5E8 | 1.10204136E8 | 0.0 | 7.275038757500258E9 | 48.50025806 | ' Tiresias about the' | 'zzle? unusual requests w' |
  15. | o_orderpriority | 1.5E8 | 5.0 | 0.0 | 1.2600248124001656E9 | 8.40016536 | '1-URGENT' | '5-LOW' |
  16. +-----------------+-----------+--------------+----------+----------------------+---------------+-----------------------+----------------------------+

信息删除

删除外表统计信息支持用户删除一张表的表行数信息和列统计信息。如果用户指定了删除的列名,则只删除这些列的信息。如果不指定,则删除整张表所有列的统计信息以及表行数信息。 请参考内表统计信息删除统计信息部分。

  • 删除整张表的信息
  1. DROP STATS hive.tpch100.orders
  • 删除表中某几列的信息
  1. DROP STATS hive.tpch100.orders (o_orderkey, o_orderdate)

实现原理

统计信息数据来源

优化器(Nereids)通过Cache读取统计信息,cache的数据来源有两个。

第一个是内部的statistics表,statistics表的数据通过用户执行analyze语句收集而来。这一部分的架构与内表相同,用户可以像分析内表一样,对外表执行analyze语句来收集统计信息。

与内表不同的是,外表cache的数据还有第二个来源stats collector。stats collector定义了一些接口,用来从外部数据源获取统计信息。比如目前已经支持的hive metastore和Iceberg两种数据源,这些接口可以获取外部数据源中已有的统计信息。以hive为例,如果用户在hive中执行过analyze操作,那么在Doris中查询的时候,Doris可以直接从hive metastore中加载已有的统计信息到缓存中,包括表的行数、列的最大最小值等。如果外部数据源也没有统计信息,stats connector会根据表中数据文件的大小和表的schema,大致估算一个行数提供给优化器,在这种情况下,列的统计信息是缺失的,可能导致优化器生成比较低效的执行计划。

Stats collector在statistics表中无数据时自动执行,对用户透明,用户无需执行命令或进行设置。

缓存的加载

缓存的加载顺序是,首先通过Statistics表加载,如果Statistics表中有信息,说明用户在doris中执行过analyze操作,这样收集上来的统计信息是最准确的,所以我们优先从Statistics表中加载。如果发现Statistics中没有当前所需表的信息,再通过stats collector从外部数据源获取。如果外部数据源也没有,stats collector会估算一个行数。 由于缓存是异步加载的,第一次query的时候可能没法利用到任何统计信息,因为这时候刚刚触发缓存加载。但一般情况下,可以保证第二次查询某张表的时候,优化器可以从缓存中获取到它的统计信息。