基础使用指南
Doris 采用 MySQL 协议进行通信,用户可通过 MySQL client 或者 MySQL JDBC连接到 Doris 集群。选择 MySQL client 版本时建议采用5.1 之后的版本,因为 5.1 之前不能支持长度超过 16 个字符的用户名。本文以 MySQL client 为例,通过一个完整的流程向用户展示 Doris 的基本使用方法。
1 创建用户
1.1 Root 用户登录与密码修改
Doris 内置 root 和 admin 用户,密码默认都为空。启动完 Doris 程序之后,可以通过 root 或 admin 用户连接到 Doris 集群。 使用下面命令即可登录 Doris:
mysql -h FE_HOST -P9030 -uroot
fe_host
是任一 FE 节点的 ip 地址。9030
是 fe.conf 中的 query_port 配置。
登陆后,可以通过以下命令修改 root 密码
SET PASSWORD FOR 'root' = PASSWORD('your_password');
1.3 创建新用户
通过下面的命令创建一个普通用户。
CREATE USER 'test' IDENTIFIED BY 'test_passwd';
后续登录时就可以通过下列连接命令登录。
mysql -h FE_HOST -P9030 -utest -ptest_passwd
新创建的普通用户默认没有任何权限。权限授予可以参考后面的权限授予。
2 数据表的创建与数据导入
2.1 创建数据库
初始可以通过 root 或 admin 用户创建数据库:
CREATE DATABASE example_db;
所有命令都可以使用 ‘HELP command;’ 查看到详细的语法帮助。如:
HELP CREATE DATABASE;
如果不清楚命令的全名,可以使用 “help 命令某一字段” 进行模糊查询。如键入 ‘HELP CREATE’,可以匹配到
CREATE DATABASE
,CREATE TABLE
,CREATE USER
等命令。
数据库创建完成之后,可以通过 SHOW DATABASES;
查看数据库信息。
MySQL> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| example_db |
| information_schema |
+--------------------+
2 rows in set (0.00 sec)
information_schema是为了兼容MySQL协议而存在,实际中信息可能不是很准确,所以关于具体数据库的信息建议通过直接查询相应数据库而获得。
2.2 账户授权
example_db 创建完成之后,可以通过 root/admin 账户将 example_db 读写权限授权给普通账户,如 test。授权之后采用 test 账户登录就可以操作 example_db 数据库了。
GRANT ALL ON example_db TO test;
2.3 建表
使用 CREATE TABLE
命令建立一个表(Table)。更多详细参数可以查看:
HELP CREATE TABLE;
首先切换数据库:
USE example_db;
Doris支持支持单分区和复合分区两种建表方式。
在复合分区中:
第一级称为 Partition,即分区。用户可以指定某一维度列作为分区列(当前只支持整型和时间类型的列),并指定每个分区的取值范围。
第二级称为 Distribution,即分桶。用户可以指定一个或多个维度列以及桶数对数据进行 HASH 分布。
以下场景推荐使用复合分区
- 有时间维度或类似带有有序值的维度,可以以这类维度列作为分区列。分区粒度可以根据导入频次、分区数据量等进行评估。
- 历史数据删除需求:如有删除历史数据的需求(比如仅保留最近N 天的数据)。使用复合分区,可以通过删除历史分区来达到目的。也可以通过在指定分区内发送 DELETE 语句进行数据删除。
- 解决数据倾斜问题:每个分区可以单独指定分桶数量。如按天分区,当每天的数据量差异很大时,可以通过指定分区的分桶数,合理划分不同分区的数据,分桶列建议选择区分度大的列。
用户也可以不使用复合分区,即使用单分区。则数据只做 HASH 分布。
下面以聚合模型为例,分别演示两种分区的建表语句。
单分区
建立一个名字为 table1 的逻辑表。分桶列为 siteid,桶数为 10。
这个表的 schema 如下:
- siteid:类型是INT(4字节), 默认值为10
- citycode:类型是SMALLINT(2字节)
- username:类型是VARCHAR, 最大长度为32, 默认值为空字符串
- pv:类型是BIGINT(8字节), 默认值是0; 这是一个指标列, Doris内部会对指标列做聚合操作, 这个列的聚合方法是求和(SUM)
建表语句如下:
CREATE TABLE table1
(
siteid INT DEFAULT '10',
citycode SMALLINT,
username VARCHAR(32) DEFAULT '',
pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(siteid, citycode, username)
DISTRIBUTED BY HASH(siteid) BUCKETS 10
PROPERTIES("replication_num" = "1");
复合分区
建立一个名字为 table2 的逻辑表。
这个表的 schema 如下:
- event_day:类型是DATE,无默认值
- siteid:类型是INT(4字节), 默认值为10
- citycode:类型是SMALLINT(2字节)
- username:类型是VARCHAR, 最大长度为32, 默认值为空字符串
- pv:类型是BIGINT(8字节), 默认值是0; 这是一个指标列, Doris 内部会对指标列做聚合操作, 这个列的聚合方法是求和(SUM)
我们使用 event_day 列作为分区列,建立3个分区: p201706, p201707, p201708
- p201706:范围为 [最小值, 2017-07-01)
- p201707:范围为 [2017-07-01, 2017-08-01)
- p201708:范围为 [2017-08-01, 2017-09-01)
注意区间为左闭右开。
每个分区使用 siteid 进行哈希分桶,桶数为10
建表语句如下:
CREATE TABLE table2
(
event_day DATE,
siteid INT DEFAULT '10',
citycode SMALLINT,
username VARCHAR(32) DEFAULT '',
pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(event_day, siteid, citycode, username)
PARTITION BY RANGE(event_day)
(
PARTITION p201706 VALUES LESS THAN ('2017-07-01'),
PARTITION p201707 VALUES LESS THAN ('2017-08-01'),
PARTITION p201708 VALUES LESS THAN ('2017-09-01')
)
DISTRIBUTED BY HASH(siteid) BUCKETS 10
PROPERTIES("replication_num" = "1");
表建完之后,可以查看 example_db 中表的信息:
MySQL> SHOW TABLES;
+----------------------+
| Tables_in_example_db |
+----------------------+
| table1 |
| table2 |
+----------------------+
2 rows in set (0.01 sec)
MySQL> DESC table1;
+----------+-------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-------+---------+-------+
| siteid | int(11) | Yes | true | 10 | |
| citycode | smallint(6) | Yes | true | N/A | |
| username | varchar(32) | Yes | true | | |
| pv | bigint(20) | Yes | false | 0 | SUM |
+----------+-------------+------+-------+---------+-------+
4 rows in set (0.00 sec)
MySQL> DESC table2;
+-----------+-------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-------+---------+-------+
| event_day | date | Yes | true | N/A | |
| siteid | int(11) | Yes | true | 10 | |
| citycode | smallint(6) | Yes | true | N/A | |
| username | varchar(32) | Yes | true | | |
| pv | bigint(20) | Yes | false | 0 | SUM |
+-----------+-------------+------+-------+---------+-------+
5 rows in set (0.00 sec)
注意事项:
- 上述表通过设置 replication_num 建的都是单副本的表,Doris建议用户采用默认的 3 副本设置,以保证高可用。
- 可以对复合分区表动态的增删分区。详见
HELP ALTER TABLE
中 Partition 相关部分。- 数据导入可以导入指定的 Partition。详见
HELP LOAD
。- 可以动态修改表的 Schema。
- 可以对 Table 增加上卷表(Rollup)以提高查询性能,这部分可以参见高级使用指南关于 Rollup 的描述。
- 表的列的Null属性默认为true,会对查询性能有一定的影响。
2.4 导入数据
Doris 支持多种数据导入方式。具体可以参阅数据导入文档。这里我们使用流式导入和 Broker 导入做示例。
流式导入
流式导入通过 HTTP 协议向 Doris 传输数据,可以不依赖其他系统或组件直接导入本地数据。详细语法帮助可以参阅 HELP STREAM LOAD;
。
示例1:以 “table1_20170707” 为 Label,使用本地文件 table1_data 导入 table1 表。
curl --location-trusted -u test:test_passwd -H "label:table1_20170707" -H "column_separator:," -T table1_data http://FE_HOST:8030/api/example_db/table1/_stream_load
- FE_HOST 是任一 FE 所在节点 IP,8030 为 fe.conf 中的 http_port。
- 可以使用任一 BE 的 IP,以及 be.conf 中的 webserver_port 进行导入。如:
BE_HOST:8040
本地文件 table1_data
以 ,
作为数据之间的分隔,具体内容如下:
1,1,jim,2
2,1,grace,2
3,2,tom,2
4,3,bush,3
5,3,helen,3
示例2: 以 “table2_20170707” 为 Label,使用本地文件 table2_data 导入 table2 表。
curl --location-trusted -u test:test -H "label:table2_20170707" -H "column_separator:|" -T table2_data http://127.0.0.1:8030/api/example_db/table2/_stream_load
本地文件 table2_data
以 |
作为数据之间的分隔,具体内容如下:
2017-07-03|1|1|jim|2
2017-07-05|2|1|grace|2
2017-07-12|3|2|tom|2
2017-07-15|4|3|bush|3
2017-07-12|5|3|helen|3
注意事项:
- 采用流式导入建议文件大小限制在 10GB 以内,过大的文件会导致失败重试代价变大。
- 每一批导入数据都需要取一个 Label,Label 最好是一个和一批数据有关的字符串,方便阅读和管理。Doris 基于 Label 保证在一个Database 内,同一批数据只可导入成功一次。失败任务的 Label 可以重用。
- 流式导入是同步命令。命令返回成功则表示数据已经导入,返回失败表示这批数据没有导入。
Broker 导入
Broker 导入通过部署的 Broker 进程,读取外部存储上的数据进行导入。更多帮助请参阅 HELP BROKER LOAD;
示例:以 “table1_20170708” 为 Label,将 HDFS 上的文件导入 table1 表
LOAD LABEL table1_20170708
(
DATA INFILE("hdfs://your.namenode.host:port/dir/table1_data")
INTO TABLE table1
)
WITH BROKER hdfs
(
"username"="hdfs_user",
"password"="hdfs_password"
)
PROPERTIES
(
"timeout"="3600",
"max_filter_ratio"="0.1"
);
Broker 导入是异步命令。以上命令执行成功只表示提交任务成功。导入是否成功需要通过 SHOW LOAD;
查看。如:
SHOW LOAD WHERE LABEL = "table1_20170708";
返回结果中,State
字段为 FINISHED 则表示导入成功。
关于 SHOW LOAD
的更多说明,可以参阅 HELP SHOW LOAD;
异步的导入任务在结束前可以取消:
CANCEL LOAD WHERE LABEL = "table1_20170708";
3 数据的查询
3.1 简单查询
示例:
MySQL> SELECT * FROM table1 LIMIT 3;
+--------+----------+----------+------+
| siteid | citycode | username | pv |
+--------+----------+----------+------+
| 2 | 1 | 'grace' | 2 |
| 5 | 3 | 'helen' | 3 |
| 3 | 2 | 'tom' | 2 |
+--------+----------+----------+------+
3 rows in set (0.01 sec)
MySQL> SELECT * FROM table1 ORDER BY citycode;
+--------+----------+----------+------+
| siteid | citycode | username | pv |
+--------+----------+----------+------+
| 2 | 1 | 'grace' | 2 |
| 1 | 1 | 'jim' | 2 |
| 3 | 2 | 'tom' | 2 |
| 4 | 3 | 'bush' | 3 |
| 5 | 3 | 'helen' | 3 |
+--------+----------+----------+------+
5 rows in set (0.01 sec)
3.3 Join 查询
示例:
MySQL> SELECT SUM(table1.pv) FROM table1 JOIN table2 WHERE table1.siteid = table2.siteid;
+--------------------+
| sum(`table1`.`pv`) |
+--------------------+
| 12 |
+--------------------+
1 row in set (0.20 sec)
3.4 子查询
示例:
MySQL> SELECT SUM(pv) FROM table2 WHERE siteid IN (SELECT siteid FROM table1 WHERE siteid > 2);
+-----------+
| sum(`pv`) |
+-----------+
| 8 |
+-----------+
1 row in set (0.13 sec)