Spark Doris Connector
Spark Doris Connector can support reading data stored in Doris and writing data to Doris through Spark.
- Support reading data from
Doris
. - Support
Spark DataFrame
batch/stream writing data toDoris
- You can map the
Doris
table toDataFrame
orRDD
, it is recommended to useDataFrame
. - Support the completion of data filtering on the
Doris
side to reduce the amount of data transmission.
Version Compatibility
Connector | Spark | Doris | Java | Scala |
---|---|---|---|---|
1.0.0 | 2.x | 0.12+ | 8 | 2.11 |
1.0.0 | 3.x | 0.12.+ | 8 | 2.12 |
Build and Install
Execute following command in dir extension/spark-doris-connector/
:
Notice:
- If you have not compiled the doris source code as a whole, you need to compile the Doris source code first, otherwise the thrift command will not be found, and you need to execute
sh build.sh
in theincubator-doris
directory. - It is recommended to compile under the docker compile environment
apache/incubator-doris:build-env-1.2
of doris, because the JDK version below 1.3 is 11, there will be compilation problems.
sh build.sh 3 ## spark 3.x version, the default is 3.1.2
sh build.sh 2 ## soark 2.x version, the default is 2.3.4
After successful compilation, the file doris-spark-1.0.0-SNAPSHOT.jar
will be generated in the output/
directory. Copy this file to ClassPath
in Spark
to use Spark-Doris-Connector
. For example, Spark
running in Local
mode, put this file in the jars/
folder. Spark
running in Yarn
cluster mode, put this file in the pre-deployment package.
Example
Read
SQL
CREATE TEMPORARY VIEW spark_doris
USING doris
OPTIONS(
"table.identifier"="$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME",
"fenodes"="$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT",
"user"="$YOUR_DORIS_USERNAME",
"password"="$YOUR_DORIS_PASSWORD"
);
SELECT * FROM spark_doris;
DataFrame
val dorisSparkDF = spark.read.format("doris")
.option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
.option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
.option("user", "$YOUR_DORIS_USERNAME")
.option("password", "$YOUR_DORIS_PASSWORD")
.load()
dorisSparkDF.show(5)
RDD
import org.apache.doris.spark._
val dorisSparkRDD = sc.dorisRDD(
tableIdentifier = Some("$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME"),
cfg = Some(Map(
"doris.fenodes" -> "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT",
"doris.request.auth.user" -> "$YOUR_DORIS_USERNAME",
"doris.request.auth.password" -> "$YOUR_DORIS_PASSWORD"
))
)
dorisSparkRDD.collect()
Write
SQL
CREATE TEMPORARY VIEW spark_doris
USING doris
OPTIONS(
"table.identifier"="$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME",
"fenodes"="$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT",
"user"="$YOUR_DORIS_USERNAME",
"password"="$YOUR_DORIS_PASSWORD"
);
INSERT INTO spark_doris VALUES ("VALUE1","VALUE2",...);
# or
INSERT INTO spark_doris SELECT * FROM YOUR_TABLE
DataFrame(batch/stream)
## batch sink
val mockDataDF = List(
(3, "440403001005", "21.cn"),
(1, "4404030013005", "22.cn"),
(33, null, "23.cn")
).toDF("id", "mi_code", "mi_name")
mockDataDF.show(5)
mockDataDF.write.format("doris")
.option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
.option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
.option("user", "$YOUR_DORIS_USERNAME")
.option("password", "$YOUR_DORIS_PASSWORD")
//other options
//specify the fields to write
.option("doris.write.fields","$YOUR_FIELDS_TO_WRITE")
.save()
## stream sink(StructuredStreaming)
val kafkaSource = spark.readStream
.option("kafka.bootstrap.servers", "$YOUR_KAFKA_SERVERS")
.option("startingOffsets", "latest")
.option("subscribe", "$YOUR_KAFKA_TOPICS")
.format("kafka")
.load()
kafkaSource.selectExpr("CAST(key AS STRING)", "CAST(value as STRING)")
.writeStream
.format("doris")
.option("checkpointLocation", "$YOUR_CHECKPOINT_LOCATION")
.option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
.option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
.option("user", "$YOUR_DORIS_USERNAME")
.option("password", "$YOUR_DORIS_PASSWORD")
//other options
//specify the fields to write
.option("doris.write.fields","$YOUR_FIELDS_TO_WRITE")
.start()
.awaitTermination()
Configuration
General
Key | Default Value | Comment |
---|---|---|
doris.fenodes | — | Doris FE http address, support multiple addresses, separated by commas |
doris.table.identifier | — | Doris table identifier, eg, db1.tbl1 |
doris.request.retries | 3 | Number of retries to send requests to Doris |
doris.request.connect.timeout.ms | 30000 | Connection timeout for sending requests to Doris |
doris.request.read.timeout.ms | 30000 | Read timeout for sending request to Doris |
doris.request.query.timeout.s | 3600 | Query the timeout time of doris, the default is 1 hour, -1 means no timeout limit |
doris.request.tablet.size | Integer.MAX_VALUE | The number of Doris Tablets corresponding to an RDD Partition. The smaller this value is set, the more partitions will be generated. This will increase the parallelism on the Spark side, but at the same time will cause greater pressure on Doris. |
doris.batch.size | 1024 | The maximum number of rows to read data from BE at one time. Increasing this value can reduce the number of connections between Spark and Doris. Thereby reducing the extra time overhead caused by network delay. |
doris.exec.mem.limit | 2147483648 | Memory limit for a single query. The default is 2GB, in bytes. |
doris.deserialize.arrow.async | false | Whether to support asynchronous conversion of Arrow format to RowBatch required for spark-doris-connector iteration |
doris.deserialize.queue.size | 64 | Asynchronous conversion of the internal processing queue in Arrow format takes effect when doris.deserialize.arrow.async is true |
doris.write.fields | — | Specifies the fields (or the order of the fields) to write to the Doris table, fileds separated by commas. By default, all fields are written in the order of Doris table fields. |
SQL & Dataframe Configuration
Key | Default Value | Comment |
---|---|---|
user | — | Doris username |
password | — | Doris password |
doris.filter.query.in.max.count | 100 | In the predicate pushdown, the maximum number of elements in the in expression value list. If this number is exceeded, the in-expression conditional filtering is processed on the Spark side. |
RDD Configuration
Key | Default Value | Comment |
---|---|---|
doris.request.auth.user | — | Doris username |
doris.request.auth.password | — | Doris password |
doris.read.field | — | List of column names in the Doris table, separated by commas |
doris.filter.query | — | Filter expression of the query, which is transparently transmitted to Doris. Doris uses this expression to complete source-side data filtering. |
Doris & Spark Column Type Mapping
Doris Type | Spark Type |
---|---|
NULL_TYPE | DataTypes.NullType |
BOOLEAN | DataTypes.BooleanType |
TINYINT | DataTypes.ByteType |
SMALLINT | DataTypes.ShortType |
INT | DataTypes.IntegerType |
BIGINT | DataTypes.LongType |
FLOAT | DataTypes.FloatType |
DOUBLE | DataTypes.DoubleType |
DATE | DataTypes.StringType1 |
DATETIME | DataTypes.StringType1 |
BINARY | DataTypes.BinaryType |
DECIMAL | DecimalType |
CHAR | DataTypes.StringType |
LARGEINT | DataTypes.StringType |
VARCHAR | DataTypes.StringType |
DECIMALV2 | DecimalType |
TIME | DataTypes.DoubleType |
HLL | Unsupported datatype |
- Note: In Connector,
DATE
andDATETIME
are mapped toString
. Due to the processing logic of the Doris underlying storage engine, when the time type is used directly, the time range covered cannot meet the demand. So useString
type to directly return the corresponding time readable text.