- 快速试用 Kubernetes 部署
- 先决条件
- 安装 dolphinscheduler
- 访问 DolphinScheduler 前端页面
- 卸载 dolphinscheduler
- 配置
- 支持矩阵
- FAQ
- 如何查看一个 pod 容器的日志?
- 如何在 Kubernetes 上扩缩容 api, master 和 worker?
- 如何用 MySQL 替代 PostgreSQL 作为 DolphinScheduler 的数据库?
- 如何在数据源中心支持 MySQL 或者 Oracle 数据源?
- 如何支持 Python 2 pip 以及自定义 requirements.txt?
- 如何支持 Python 3?
- 如何支持 Hadoop, Spark, Flink, Hive 或 DataX?
- 如何支持 Spark 3?
- 如何在 Master、Worker 和 Api 服务之间支持共享存储?
- 如何支持本地文件存储而非 HDFS 和 S3?
- 如何支持 S3 资源存储,例如 MinIO?
- 如何配置 SkyWalking?
- 附录-配置
快速试用 Kubernetes 部署
Kubernetes部署目的是在Kubernetes集群中部署 DolphinScheduler 服务,能调度大量任务,可用于在生产中部署。
如果你是新手,想要体验 DolphinScheduler 的功能,推荐使用Standalone方式体检。如果你想体验更完整的功能,或者更大的任务量,推荐使用伪集群部署。如果你是在生产中使用,推荐使用集群部署或者kubernetes
先决条件
- Helm 3.1.0+
- Kubernetes 1.12+
- PV 供应(需要基础设施支持)
安装 dolphinscheduler
请下载源码包 apache-dolphinscheduler--src.tar.gz,下载地址: 下载
发布一个名为 dolphinscheduler
的版本(release),请执行以下命令:
$ tar -zxvf apache-dolphinscheduler-<version>-src.tar.gz
$ cd apache-dolphinscheduler-<version>-src/deploy/kubernetes/dolphinscheduler
$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm dependency update .
$ helm install dolphinscheduler . --set image.tag=<version>
将名为 dolphinscheduler
的版本(release) 发布到 test
的命名空间中:
$ helm install dolphinscheduler . -n test
提示: 如果名为
test
的命名空间被使用, 选项参数-n test
需要添加到helm
和kubectl
命令中
这些命令以默认配置在 Kubernetes 集群上部署 DolphinScheduler,附录-配置部分列出了可以在安装过程中配置的参数
提示: 列出所有已发布的版本,使用
helm list
PostgreSQL (用户 root
, 密码 root
, 数据库 dolphinscheduler
) 和 ZooKeeper 服务将会默认启动
访问 DolphinScheduler 前端页面
如果 values.yaml
文件中的 ingress.enabled
被设置为 true
, 在浏览器中访问 http://${ingress.host}/dolphinscheduler
即可
提示: 如果 ingress 访问遇到问题,请联系 Kubernetes 管理员并查看 Ingress
否则,当 api.service.type=ClusterIP
时,你需要执行 port-forward 端口转发命令:
$ kubectl port-forward --address 0.0.0.0 svc/dolphinscheduler-api 12345:12345
$ kubectl port-forward --address 0.0.0.0 -n test svc/dolphinscheduler-api 12345:12345 # 使用 test 命名空间
提示: 如果出现
unable to do port forwarding: socat not found
错误, 需要先安装socat
访问前端页面:http://localhost:12345/dolphinscheduler/ui,如果有需要请修改成对应的 IP 地址
或者当 api.service.type=NodePort
时,你需要执行命令:
NODE_IP=$(kubectl get no -n {{ .Release.Namespace }} -o jsonpath="{.items[0].status.addresses[0].address}")
NODE_PORT=$(kubectl get svc {{ template "dolphinscheduler.fullname" . }}-api -n {{ .Release.Namespace }} -o jsonpath="{.spec.ports[0].nodePort}")
echo http://$NODE_IP:$NODE_PORT/dolphinscheduler
然后访问前端页面: http://localhost:12345/dolphinscheduler/ui
默认的用户是admin
,默认的密码是dolphinscheduler123
请参考用户手册章节的快速上手查看如何使用DolphinScheduler
卸载 dolphinscheduler
卸载名为 dolphinscheduler
的版本(release),请执行:
$ helm uninstall dolphinscheduler
该命令将删除与 dolphinscheduler
相关的所有 Kubernetes 组件(但PVC除外),并删除版本(release)
要删除与 dolphinscheduler
相关的PVC,请执行:
$ kubectl delete pvc -l app.kubernetes.io/instance=dolphinscheduler
注意: 删除PVC也会删除所有数据,请谨慎操作!
配置
配置文件为 values.yaml
,附录-配置 表格列出了 DolphinScheduler 的可配置参数及其默认值
支持矩阵
Type | 支持 | 备注 |
---|---|---|
Shell | 是 | |
Python2 | 是 | |
Python3 | 间接支持 | 详见 FAQ |
Hadoop2 | 间接支持 | 详见 FAQ |
Hadoop3 | 尚未确定 | 尚未测试 |
Spark-Local(client) | 间接支持 | 详见 FAQ |
Spark-YARN(cluster) | 间接支持 | 详见 FAQ |
Spark-Standalone(cluster) | 尚不 | |
Spark-Kubernetes(cluster) | 尚不 | |
Flink-Local(local>=1.11) | 尚不 | Generic CLI 模式尚未支持 |
Flink-YARN(yarn-cluster) | 间接支持 | 详见 FAQ |
Flink-YARN(yarn-session/yarn-per-job/yarn-application>=1.11) | 尚不 | Generic CLI 模式尚未支持 |
Flink-Standalone(default) | 尚不 | |
Flink-Standalone(remote>=1.11) | 尚不 | Generic CLI 模式尚未支持 |
Flink-Kubernetes(default) | 尚不 | |
Flink-Kubernetes(remote>=1.11) | 尚不 | Generic CLI 模式尚未支持 |
Flink-NativeKubernetes(kubernetes-session/application>=1.11) | 尚不 | Generic CLI 模式尚未支持 |
MapReduce | 间接支持 | 详见 FAQ |
Kerberos | 间接支持 | 详见 FAQ |
HTTP | 是 | |
DataX | 间接支持 | 详见 FAQ |
Sqoop | 间接支持 | 详见 FAQ |
SQL-MySQL | 间接支持 | 详见 FAQ |
SQL-PostgreSQL | 是 | |
SQL-Hive | 间接支持 | 详见 FAQ |
SQL-Spark | 间接支持 | 详见 FAQ |
SQL-ClickHouse | 间接支持 | 详见 FAQ |
SQL-Oracle | 间接支持 | 详见 FAQ |
SQL-SQLServer | 间接支持 | 详见 FAQ |
SQL-DB2 | 间接支持 | 详见 FAQ |
FAQ
如何查看一个 pod 容器的日志?
列出所有 pods (别名 po
):
kubectl get po
kubectl get po -n test # with test namespace
查看名为 dolphinscheduler-master-0 的 pod 容器的日志:
kubectl logs dolphinscheduler-master-0
kubectl logs -f dolphinscheduler-master-0 # 跟随日志输出
kubectl logs --tail 10 dolphinscheduler-master-0 -n test # 显示倒数10行日志
如何在 Kubernetes 上扩缩容 api, master 和 worker?
列出所有 deployments (别名 deploy
):
kubectl get deploy
kubectl get deploy -n test # with test namespace
扩缩容 api 至 3 个副本:
kubectl scale --replicas=3 deploy dolphinscheduler-api
kubectl scale --replicas=3 deploy dolphinscheduler-api -n test # with test namespace
列出所有 statefulsets (别名 sts
):
kubectl get sts
kubectl get sts -n test # with test namespace
扩缩容 master 至 2 个副本:
kubectl scale --replicas=2 sts dolphinscheduler-master
kubectl scale --replicas=2 sts dolphinscheduler-master -n test # with test namespace
扩缩容 worker 至 6 个副本:
kubectl scale --replicas=6 sts dolphinscheduler-worker
kubectl scale --replicas=6 sts dolphinscheduler-worker -n test # with test namespace
如何用 MySQL 替代 PostgreSQL 作为 DolphinScheduler 的数据库?
由于商业许可证的原因,我们不能直接使用 MySQL 的驱动包.
如果你要使用 MySQL, 你可以基于官方镜像
apache/dolphinscheduler-<service>
进行构建.从3.0.0版本起,dolphinscheduler已经微服务化,更改元数据存储需要对把所有的服务都替换为 MySQL 驱动包,包括 dolphinscheduler-tools, dolphinscheduler-master, dolphinscheduler-worker, dolphinscheduler-api, dolphinscheduler-alert-server .
下载 MySQL 驱动包 mysql-connector-java-8.0.16.jar
创建一个新的
Dockerfile
,用于添加 MySQL 的驱动包:
FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-<service>:<version>
# 例如
# FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-tools:<version>
# 注意,如果构建的是dolphinscheduler-tools镜像
# 需要将下面一行修改为COPY mysql-connector-java-8.0.16.jar /opt/dolphinscheduler/tools/libs
# 其他服务保持不变即可
COPY mysql-connector-java-8.0.16.jar /opt/dolphinscheduler/libs
- 构建一个包含 MySQL 驱动包的新镜像:
docker build -t apache/dolphinscheduler-<service>:mysql-driver .
推送 docker 镜像
apache/dolphinscheduler-<service>:mysql-driver
到一个 docker registry 中修改
values.yaml
文件中 image 的repository
字段,并更新tag
为mysql-driver
修改
values.yaml
文件中 postgresql 的enabled
为false
修改
values.yaml
文件中的 externalDatabase 配置 (尤其修改host
,username
和password
)
externalDatabase:
type: "mysql"
host: "localhost"
port: "3306"
username: "root"
password: "root"
database: "dolphinscheduler"
params: "useUnicode=true&characterEncoding=UTF-8"
- 部署 dolphinscheduler (详见安装 dolphinscheduler)
如何在数据源中心支持 MySQL 或者 Oracle 数据源?
由于商业许可证的原因,我们不能直接使用 MySQL 或者 Oracle 的驱动包.
如果你要添加 MySQL 或者 Oracle, 你可以基于官方镜像
apache/dolphinscheduler-<service>
进行构建.需要更改 dolphinscheduler-worker, dolphinscheduler-api 两个服务的镜像.
下载 MySQL 驱动包 mysql-connector-java-8.0.16.jar 或者 Oracle 驱动包 ojdbc8.jar (例如
ojdbc8-19.9.0.0.jar
)创建一个新的
Dockerfile
,用于添加 MySQL 或者 Oracle 驱动包:
FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-<service>:<version>
# 例如
# FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-worker:<version>
# 如果你想支持 MySQL 数据源
COPY mysql-connector-java-8.0.16.jar /opt/dolphinscheduler/libs
# 如果你想支持 Oracle 数据源
COPY ojdbc8-19.9.0.0.jar /opt/dolphinscheduler/libs
- 构建一个包含 MySQL 或者 Oracle 驱动包的新镜像:
docker build -t apache/dolphinscheduler-<service>:new-driver .
推送 docker 镜像
apache/dolphinscheduler-<service>:new-driver
到一个 docker registry 中修改
values.yaml
文件中 image 的repository
字段,并更新tag
为new-driver
部署 dolphinscheduler (详见安装 dolphinscheduler)
在数据源中心添加一个 MySQL 或者 Oracle 数据源
如何支持 Python 2 pip 以及自定义 requirements.txt?
只需要更改 dolphinscheduler-worker 服务的镜像.
- 创建一个新的
Dockerfile
,用于安装 pip:
FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-worker:<version>
COPY requirements.txt /tmp
RUN apt-get update && \
apt-get install -y --no-install-recommends python-pip && \
pip install --no-cache-dir -r /tmp/requirements.txt && \
rm -rf /var/lib/apt/lists/*
这个命令会安装默认的 pip 18.1. 如果你想升级 pip, 只需添加一行
pip install --no-cache-dir -U pip && \
- 构建一个包含 pip 的新镜像:
docker build -t apache/dolphinscheduler-worker:pip .
推送 docker 镜像
apache/dolphinscheduler-worker:pip
到一个 docker registry 中修改
values.yaml
文件中 image 的repository
字段,并更新tag
为pip
部署 dolphinscheduler (详见安装 dolphinscheduler)
在一个新 Python 任务下验证 pip
如何支持 Python 3?
只需要更改 dolphinscheduler-worker 服务的镜像.
- 创建一个新的
Dockerfile
,用于安装 Python 3:
FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-worker:<version>
RUN apt-get update && \
apt-get install -y --no-install-recommends python3 && \
rm -rf /var/lib/apt/lists/*
这个命令会安装默认的 Python 3.7.3. 如果你也想安装 pip3, 将 python3
替换为 python3-pip
即可
apt-get install -y --no-install-recommends python3-pip && \
- 构建一个包含 Python 3 的新镜像:
docker build -t apache/dolphinscheduler-worker:python3 .
推送 docker 镜像
apache/dolphinscheduler-worker:python3
到一个 docker registry 中修改
values.yaml
文件中 image 的repository
字段,并更新tag
为python3
修改
values.yaml
文件中的PYTHON_HOME
为/usr/bin/python3
部署 dolphinscheduler (详见安装 dolphinscheduler)
在一个新 Python 任务下验证 Python 3
如何支持 Hadoop, Spark, Flink, Hive 或 DataX?
以 Spark 2.4.7 为例:
下载 Spark 2.4.7 发布的二进制包
spark-2.4.7-bin-hadoop2.7.tgz
确保
common.sharedStoragePersistence.enabled
开启部署 dolphinscheduler (详见安装 dolphinscheduler)
复制 Spark 3.1.1 二进制包到 Docker 容器中
kubectl cp spark-2.4.7-bin-hadoop2.7.tgz dolphinscheduler-worker-0:/opt/soft
kubectl cp -n test spark-2.4.7-bin-hadoop2.7.tgz dolphinscheduler-worker-0:/opt/soft # with test namespace
因为存储卷 sharedStoragePersistence
被挂载到 /opt/soft
, 因此 /opt/soft
中的所有文件都不会丢失
- 登录到容器并确保
SPARK_HOME2
存在
kubectl exec -it dolphinscheduler-worker-0 bash
kubectl exec -n test -it dolphinscheduler-worker-0 bash # with test namespace
cd /opt/soft
tar zxf spark-2.4.7-bin-hadoop2.7.tgz
rm -f spark-2.4.7-bin-hadoop2.7.tgz
ln -s spark-2.4.7-bin-hadoop2.7 spark2 # or just mv
$SPARK_HOME2/bin/spark-submit --version
如果一切执行正常,最后一条命令将会打印 Spark 版本信息
- 在一个 Shell 任务下验证 Spark
$SPARK_HOME2/bin/spark-submit --class org.apache.spark.examples.SparkPi $SPARK_HOME2/examples/jars/spark-examples_2.11-2.4.7.jar
检查任务日志是否包含输出 Pi is roughly 3.146015
- 在一个 Spark 任务下验证 Spark
文件 spark-examples_2.11-2.4.7.jar
需要先被上传到资源中心,然后创建一个 Spark 任务并设置:
- Spark版本:
SPARK2
- 主函数的Class:
org.apache.spark.examples.SparkPi
- 主程序包:
spark-examples_2.11-2.4.7.jar
- 部署方式:
local
同样地, 检查任务日志是否包含输出 Pi is roughly 3.146015
- 验证 Spark on YARN
Spark on YARN (部署方式为 cluster
或 client
) 需要 Hadoop 支持. 类似于 Spark 支持, 支持 Hadoop 的操作几乎和前面的步骤相同
确保 $HADOOP_HOME
和 $HADOOP_CONF_DIR
存在
如何支持 Spark 3?
事实上,使用 spark-submit
提交应用的方式是相同的, 无论是 Spark 1, 2 或 3. 换句话说,SPARK_HOME2
的语义是第二个 SPARK_HOME
, 而非 SPARK2
的 HOME
, 因此只需设置 SPARK_HOME2=/path/to/spark3
即可
以 Spark 3.1.1 为例:
下载 Spark 3.1.1 发布的二进制包
spark-3.1.1-bin-hadoop2.7.tgz
确保
common.sharedStoragePersistence.enabled
开启部署 dolphinscheduler (详见安装 dolphinscheduler)
复制 Spark 3.1.1 二进制包到 Docker 容器中
kubectl cp spark-3.1.1-bin-hadoop2.7.tgz dolphinscheduler-worker-0:/opt/soft
kubectl cp -n test spark-3.1.1-bin-hadoop2.7.tgz dolphinscheduler-worker-0:/opt/soft # with test namespace
- 登录到容器并确保
SPARK_HOME2
存在
kubectl exec -it dolphinscheduler-worker-0 bash
kubectl exec -n test -it dolphinscheduler-worker-0 bash # with test namespace
cd /opt/soft
tar zxf spark-3.1.1-bin-hadoop2.7.tgz
rm -f spark-3.1.1-bin-hadoop2.7.tgz
ln -s spark-3.1.1-bin-hadoop2.7 spark2 # or just mv
$SPARK_HOME2/bin/spark-submit --version
如果一切执行正常,最后一条命令将会打印 Spark 版本信息
- 在一个 Shell 任务下验证 Spark
$SPARK_HOME2/bin/spark-submit --class org.apache.spark.examples.SparkPi $SPARK_HOME2/examples/jars/spark-examples_2.12-3.1.1.jar
检查任务日志是否包含输出 Pi is roughly 3.146015
如何在 Master、Worker 和 Api 服务之间支持共享存储?
例如, Master、Worker 和 Api 服务可能同时使用 Hadoop
- 修改
values.yaml
文件中下面的配置项
common:
sharedStoragePersistence:
enabled: false
mountPath: "/opt/soft"
accessModes:
- "ReadWriteMany"
storageClassName: "-"
storage: "20Gi"
storageClassName
和 storage
需要被修改为实际值
注意:
storageClassName
必须支持访问模式:ReadWriteMany
将 Hadoop 复制到目录
/opt/soft
确保
$HADOOP_HOME
和$HADOOP_CONF_DIR
正确
如何支持本地文件存储而非 HDFS 和 S3?
修改 values.yaml
文件中下面的配置项
common:
configmap:
RESOURCE_STORAGE_TYPE: "HDFS"
RESOURCE_UPLOAD_PATH: "/dolphinscheduler"
FS_DEFAULT_FS: "file:///"
fsFileResourcePersistence:
enabled: true
accessModes:
- "ReadWriteMany"
storageClassName: "-"
storage: "20Gi"
storageClassName
和 storage
需要被修改为实际值
注意:
storageClassName
必须支持访问模式:ReadWriteMany
如何支持 S3 资源存储,例如 MinIO?
以 MinIO 为例: 修改 values.yaml
文件中下面的配置项
common:
configmap:
RESOURCE_STORAGE_TYPE: "S3"
RESOURCE_UPLOAD_PATH: "/dolphinscheduler"
FS_DEFAULT_FS: "s3a://BUCKET_NAME"
FS_S3A_ENDPOINT: "http://MINIO_IP:9000"
FS_S3A_ACCESS_KEY: "MINIO_ACCESS_KEY"
FS_S3A_SECRET_KEY: "MINIO_SECRET_KEY"
BUCKET_NAME
, MINIO_IP
, MINIO_ACCESS_KEY
和 MINIO_SECRET_KEY
需要被修改为实际值
注意:
MINIO_IP
只能使用 IP 而非域名, 因为 DolphinScheduler 尚不支持 S3 路径风格访问 (S3 path style access)
如何配置 SkyWalking?
修改 values.yaml
文件中的 SKYWALKING 配置项
common:
configmap:
SKYWALKING_ENABLE: "true"
SW_AGENT_COLLECTOR_BACKEND_SERVICES: "127.0.0.1:11800"
SW_GRPC_LOG_SERVER_HOST: "127.0.0.1"
SW_GRPC_LOG_SERVER_PORT: "11800"
附录-配置
Parameter | Description | Default |
---|---|---|
timezone | World time and date for cities in all time zones | Asia/Shanghai |
image.repository | Docker image repository for the DolphinScheduler | apache/dolphinscheduler |
image.tag | Docker image version for the DolphinScheduler | latest |
image.pullPolicy | Image pull policy. One of Always, Never, IfNotPresent | IfNotPresent |
image.pullSecret | Image pull secret. An optional reference to secret in the same namespace to use for pulling any of the images | nil |
postgresql.enabled | If not exists external PostgreSQL, by default, the DolphinScheduler will use a internal PostgreSQL | true |
postgresql.postgresqlUsername | The username for internal PostgreSQL | root |
postgresql.postgresqlPassword | The password for internal PostgreSQL | root |
postgresql.postgresqlDatabase | The database for internal PostgreSQL | dolphinscheduler |
postgresql.persistence.enabled | Set postgresql.persistence.enabled to true to mount a new volume for internal PostgreSQL | false |
postgresql.persistence.size | PersistentVolumeClaim size | 20Gi |
postgresql.persistence.storageClass | PostgreSQL data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
externalDatabase.type | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database type will use it | postgresql |
externalDatabase.driver | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database driver will use it | org.postgresql.Driver |
externalDatabase.host | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database host will use it | localhost |
externalDatabase.port | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database port will use it | 5432 |
externalDatabase.username | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database username will use it | root |
externalDatabase.password | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database password will use it | root |
externalDatabase.database | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database database will use it | dolphinscheduler |
externalDatabase.params | If exists external PostgreSQL, and set postgresql.enabled value to false. DolphinScheduler’s database params will use it | characterEncoding=utf8 |
zookeeper.enabled | If not exists external Zookeeper, by default, the DolphinScheduler will use a internal Zookeeper | true |
zookeeper.service.port | The port of zookeeper | 2181 |
zookeeper.fourlwCommandsWhitelist | A list of comma separated Four Letter Words commands to use | srvr,ruok,wchs,cons |
zookeeper.persistence.enabled | Set zookeeper.persistence.enabled to true to mount a new volume for internal Zookeeper | false |
zookeeper.persistence.size | PersistentVolumeClaim size | 20Gi |
zookeeper.persistence.storageClass | Zookeeper data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
externalRegistry.registryPluginDir | If exists external registry and set zookeeper.enable to false , specify the external registry plugin directory | lib/plugin/registry |
externalRegistry.registryPluginName | If exists external registry and set zookeeper.enable to false , specify the external registry plugin name | zookeeper |
externalRegistry.registryServers | If exists external registry and set zookeeper.enable to false , specify the external registry servers | 127.0.0.1:2181 |
common.configmap.DOLPHINSCHEDULER_OPTS | The jvm options for dolphinscheduler, suitable for all servers | “” |
common.configmap.DATA_BASEDIR_PATH | User data directory path, self configuration, please make sure the directory exists and have read write permissions | /tmp/dolphinscheduler |
common.configmap.RESOURCE_STORAGE_TYPE | Resource storage type: HDFS, S3, NONE | HDFS |
common.configmap.RESOURCE_UPLOAD_PATH | Resource store on HDFS/S3 path, please make sure the directory exists on hdfs and have read write permissions | /dolphinscheduler |
common.configmap.FS_DEFAULT_FS | Resource storage file system like file:/// , hdfs://mycluster:8020 or s3a://dolphinscheduler | file:/// |
common.configmap.FS_S3A_ENDPOINT | S3 endpoint when common.configmap.RESOURCE_STORAGE_TYPE is set to S3 | s3.xxx.amazonaws.com |
common.configmap.FS_S3A_ACCESS_KEY | S3 access key when common.configmap.RESOURCE_STORAGE_TYPE is set to S3 | xxxxxxx |
common.configmap.FS_S3A_SECRET_KEY | S3 secret key when common.configmap.RESOURCE_STORAGE_TYPE is set to S3 | xxxxxxx |
common.configmap.HADOOP_SECURITY_AUTHENTICATION_STARTUP_STATE | Whether to startup kerberos | false |
common.configmap.JAVA_SECURITY_KRB5_CONF_PATH | The java.security.krb5.conf path | /opt/krb5.conf |
common.configmap.LOGIN_USER_KEYTAB_USERNAME | The login user from keytab username | hdfs@HADOOP.COM |
common.configmap.LOGIN_USER_KEYTAB_PATH | The login user from keytab path | /opt/hdfs.keytab |
common.configmap.KERBEROS_EXPIRE_TIME | The kerberos expire time, the unit is hour | 2 |
common.configmap.HDFS_ROOT_USER | The HDFS root user who must have the permission to create directories under the HDFS root path | hdfs |
common.configmap.RESOURCE_MANAGER_HTTPADDRESS_PORT | Set resource manager httpaddress port for yarn | 8088 |
common.configmap.YARN_RESOURCEMANAGER_HA_RM_IDS | If resourcemanager HA is enabled, please set the HA IPs | nil |
common.configmap.YARN_APPLICATION_STATUS_ADDRESS | If resourcemanager is single, you only need to replace ds1 to actual resourcemanager hostname, otherwise keep default | http://ds1:%s/ws/v1/cluster/apps/%s |
common.configmap.SKYWALKING_ENABLE | Set whether to enable skywalking | false |
common.configmap.SW_AGENT_COLLECTOR_BACKEND_SERVICES | Set agent collector backend services for skywalking | 127.0.0.1:11800 |
common.configmap.SW_GRPC_LOG_SERVER_HOST | Set grpc log server host for skywalking | 127.0.0.1 |
common.configmap.SW_GRPC_LOG_SERVER_PORT | Set grpc log server port for skywalking | 11800 |
common.configmap.HADOOP_HOME | Set HADOOP_HOME for DolphinScheduler’s task environment | /opt/soft/hadoop |
common.configmap.HADOOP_CONF_DIR | Set HADOOP_CONF_DIR for DolphinScheduler’s task environment | /opt/soft/hadoop/etc/hadoop |
common.configmap.SPARK_HOME1 | Set SPARK_HOME1 for DolphinScheduler’s task environment | /opt/soft/spark1 |
common.configmap.SPARK_HOME2 | Set SPARK_HOME2 for DolphinScheduler’s task environment | /opt/soft/spark2 |
common.configmap.PYTHON_HOME | Set PYTHON_HOME for DolphinScheduler’s task environment | /usr/bin/python |
common.configmap.JAVA_HOME | Set JAVA_HOME for DolphinScheduler’s task environment | /usr/local/openjdk-8 |
common.configmap.HIVE_HOME | Set HIVE_HOME for DolphinScheduler’s task environment | /opt/soft/hive |
common.configmap.FLINK_HOME | Set FLINK_HOME for DolphinScheduler’s task environment | /opt/soft/flink |
common.configmap.DATAX_HOME | Set DATAX_HOME for DolphinScheduler’s task environment | /opt/soft/datax |
common.sharedStoragePersistence.enabled | Set common.sharedStoragePersistence.enabled to true to mount a shared storage volume for Hadoop, Spark binary and etc | false |
common.sharedStoragePersistence.mountPath | The mount path for the shared storage volume | /opt/soft |
common.sharedStoragePersistence.accessModes | PersistentVolumeClaim access modes, must be ReadWriteMany | [ReadWriteMany] |
common.sharedStoragePersistence.storageClassName | Shared Storage persistent volume storage class, must support the access mode: ReadWriteMany | - |
common.sharedStoragePersistence.storage | PersistentVolumeClaim size | 20Gi |
common.fsFileResourcePersistence.enabled | Set common.fsFileResourcePersistence.enabled to true to mount a new file resource volume for api and worker | false |
common.fsFileResourcePersistence.accessModes | PersistentVolumeClaim access modes, must be ReadWriteMany | [ReadWriteMany] |
common.fsFileResourcePersistence.storageClassName | Resource persistent volume storage class, must support the access mode: ReadWriteMany | - |
common.fsFileResourcePersistence.storage | PersistentVolumeClaim size | 20Gi |
master.podManagementPolicy | PodManagementPolicy controls how pods are created during initial scale up, when replacing pods on nodes, or when scaling down | Parallel |
master.replicas | Replicas is the desired number of replicas of the given Template | 3 |
master.annotations | The annotations for master server | {} |
master.affinity | If specified, the pod’s scheduling constraints | {} |
master.nodeSelector | NodeSelector is a selector which must be true for the pod to fit on a node | {} |
master.tolerations | If specified, the pod’s tolerations | {} |
master.resources | The resource limit and request config for master server | {} |
master.configmap.MASTER_SERVER_OPTS | The jvm options for master server | -Xms1g -Xmx1g -Xmn512m |
master.configmap.MASTER_EXEC_THREADS | Master execute thread number to limit process instances | 100 |
master.configmap.MASTER_EXEC_TASK_NUM | Master execute task number in parallel per process instance | 20 |
master.configmap.MASTER_DISPATCH_TASK_NUM | Master dispatch task number per batch | 3 |
master.configmap.MASTER_HOST_SELECTOR | Master host selector to select a suitable worker, optional values include Random, RoundRobin, LowerWeight | LowerWeight |
master.configmap.MASTER_HEARTBEAT_INTERVAL | Master heartbeat interval, the unit is second | 10 |
master.configmap.MASTER_TASK_COMMIT_RETRYTIMES | Master commit task retry times | 5 |
master.configmap.MASTER_TASK_COMMIT_INTERVAL | master commit task interval, the unit is second | 1 |
master.configmap.MASTER_MAX_CPULOAD_AVG | Master max cpuload avg, only higher than the system cpu load average, master server can schedule | -1 (the number of cpu cores 2 ) |
master.configmap.MASTER_RESERVED_MEMORY | Master reserved memory, only lower than system available memory, master server can schedule, the unit is G | 0.3 |
master.livenessProbe.enabled | Turn on and off liveness probe | true |
master.livenessProbe.initialDelaySeconds | Delay before liveness probe is initiated | 30 |
master.livenessProbe.periodSeconds | How often to perform the probe | 30 |
master.livenessProbe.timeoutSeconds | When the probe times out | 5 |
master.livenessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
master.livenessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
master.readinessProbe.enabled | Turn on and off readiness probe | true |
master.readinessProbe.initialDelaySeconds | Delay before readiness probe is initiated | 30 |
master.readinessProbe.periodSeconds | How often to perform the probe | 30 |
master.readinessProbe.timeoutSeconds | When the probe times out | 5 |
master.readinessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
master.readinessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
master.persistentVolumeClaim.enabled | Set master.persistentVolumeClaim.enabled to true to mount a new volume for master | false |
master.persistentVolumeClaim.accessModes | PersistentVolumeClaim access modes | [ReadWriteOnce] |
master.persistentVolumeClaim.storageClassName | Master logs data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
master.persistentVolumeClaim.storage | PersistentVolumeClaim size | 20Gi |
worker.podManagementPolicy | PodManagementPolicy controls how pods are created during initial scale up, when replacing pods on nodes, or when scaling down | Parallel |
worker.replicas | Replicas is the desired number of replicas of the given Template | 3 |
worker.annotations | The annotations for worker server | {} |
worker.affinity | If specified, the pod’s scheduling constraints | {} |
worker.nodeSelector | NodeSelector is a selector which must be true for the pod to fit on a node | {} |
worker.tolerations | If specified, the pod’s tolerations | {} |
worker.resources | The resource limit and request config for worker server | {} |
worker.configmap.WORKER_SERVER_OPTS | The jvm options for worker server | -Xms1g -Xmx1g -Xmn512m |
worker.configmap.WORKER_EXEC_THREADS | Worker execute thread number to limit task instances | 100 |
worker.configmap.WORKER_HEARTBEAT_INTERVAL | Worker heartbeat interval, the unit is second | 10 |
worker.configmap.WORKER_MAX_CPULOAD_AVG | Worker max cpuload avg, only higher than the system cpu load average, worker server can be dispatched tasks | -1 (the number of cpu cores 2 ) |
worker.configmap.WORKER_RESERVED_MEMORY | Worker reserved memory, only lower than system available memory, worker server can be dispatched tasks, the unit is G | 0.3 |
worker.configmap.WORKER_GROUPS | Worker groups | default |
worker.livenessProbe.enabled | Turn on and off liveness probe | true |
worker.livenessProbe.initialDelaySeconds | Delay before liveness probe is initiated | 30 |
worker.livenessProbe.periodSeconds | How often to perform the probe | 30 |
worker.livenessProbe.timeoutSeconds | When the probe times out | 5 |
worker.livenessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
worker.livenessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
worker.readinessProbe.enabled | Turn on and off readiness probe | true |
worker.readinessProbe.initialDelaySeconds | Delay before readiness probe is initiated | 30 |
worker.readinessProbe.periodSeconds | How often to perform the probe | 30 |
worker.readinessProbe.timeoutSeconds | When the probe times out | 5 |
worker.readinessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
worker.readinessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
worker.persistentVolumeClaim.enabled | Set worker.persistentVolumeClaim.enabled to true to enable persistentVolumeClaim for worker | false |
worker.persistentVolumeClaim.dataPersistentVolume.enabled | Set worker.persistentVolumeClaim.dataPersistentVolume.enabled to true to mount a data volume for worker | false |
worker.persistentVolumeClaim.dataPersistentVolume.accessModes | PersistentVolumeClaim access modes | [ReadWriteOnce] |
worker.persistentVolumeClaim.dataPersistentVolume.storageClassName | Worker data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
worker.persistentVolumeClaim.dataPersistentVolume.storage | PersistentVolumeClaim size | 20Gi |
worker.persistentVolumeClaim.logsPersistentVolume.enabled | Set worker.persistentVolumeClaim.logsPersistentVolume.enabled to true to mount a logs volume for worker | false |
worker.persistentVolumeClaim.logsPersistentVolume.accessModes | PersistentVolumeClaim access modes | [ReadWriteOnce] |
worker.persistentVolumeClaim.logsPersistentVolume.storageClassName | Worker logs data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
worker.persistentVolumeClaim.logsPersistentVolume.storage | PersistentVolumeClaim size | 20Gi |
alert.replicas | Replicas is the desired number of replicas of the given Template | 1 |
alert.strategy.type | Type of deployment. Can be “Recreate” or “RollingUpdate” | RollingUpdate |
alert.strategy.rollingUpdate.maxSurge | The maximum number of pods that can be scheduled above the desired number of pods | 25% |
alert.strategy.rollingUpdate.maxUnavailable | The maximum number of pods that can be unavailable during the update | 25% |
alert.annotations | The annotations for alert server | {} |
alert.affinity | If specified, the pod’s scheduling constraints | {} |
alert.nodeSelector | NodeSelector is a selector which must be true for the pod to fit on a node | {} |
alert.tolerations | If specified, the pod’s tolerations | {} |
alert.resources | The resource limit and request config for alert server | {} |
alert.configmap.ALERT_SERVER_OPTS | The jvm options for alert server | -Xms512m -Xmx512m -Xmn256m |
alert.configmap.XLS_FILE_PATH | XLS file path | /tmp/xls |
alert.configmap.MAIL_SERVER_HOST | Mail SERVER HOST | nil |
alert.configmap.MAIL_SERVER_PORT | Mail SERVER PORT | nil |
alert.configmap.MAIL_SENDER | Mail SENDER | nil |
alert.configmap.MAIL_USER | Mail USER | nil |
alert.configmap.MAIL_PASSWD | Mail PASSWORD | nil |
alert.configmap.MAIL_SMTP_STARTTLS_ENABLE | Mail SMTP STARTTLS enable | false |
alert.configmap.MAIL_SMTP_SSL_ENABLE | Mail SMTP SSL enable | false |
alert.configmap.MAIL_SMTP_SSL_TRUST | Mail SMTP SSL TRUST | nil |
alert.configmap.ENTERPRISE_WECHAT_ENABLE | Enterprise Wechat enable | false |
alert.configmap.ENTERPRISE_WECHAT_CORP_ID | Enterprise Wechat corp id | nil |
alert.configmap.ENTERPRISE_WECHAT_SECRET | Enterprise Wechat secret | nil |
alert.configmap.ENTERPRISE_WECHAT_AGENT_ID | Enterprise Wechat agent id | nil |
alert.configmap.ENTERPRISE_WECHAT_USERS | Enterprise Wechat users | nil |
alert.livenessProbe.enabled | Turn on and off liveness probe | true |
alert.livenessProbe.initialDelaySeconds | Delay before liveness probe is initiated | 30 |
alert.livenessProbe.periodSeconds | How often to perform the probe | 30 |
alert.livenessProbe.timeoutSeconds | When the probe times out | 5 |
alert.livenessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
alert.livenessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
alert.readinessProbe.enabled | Turn on and off readiness probe | true |
alert.readinessProbe.initialDelaySeconds | Delay before readiness probe is initiated | 30 |
alert.readinessProbe.periodSeconds | How often to perform the probe | 30 |
alert.readinessProbe.timeoutSeconds | When the probe times out | 5 |
alert.readinessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
alert.readinessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
alert.persistentVolumeClaim.enabled | Set alert.persistentVolumeClaim.enabled to true to mount a new volume for alert | false |
alert.persistentVolumeClaim.accessModes | PersistentVolumeClaim access modes | [ReadWriteOnce] |
alert.persistentVolumeClaim.storageClassName | Alert logs data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
alert.persistentVolumeClaim.storage | PersistentVolumeClaim size | 20Gi |
api.replicas | Replicas is the desired number of replicas of the given Template | 1 |
api.strategy.type | Type of deployment. Can be “Recreate” or “RollingUpdate” | RollingUpdate |
api.strategy.rollingUpdate.maxSurge | The maximum number of pods that can be scheduled above the desired number of pods | 25% |
api.strategy.rollingUpdate.maxUnavailable | The maximum number of pods that can be unavailable during the update | 25% |
api.annotations | The annotations for api server | {} |
api.affinity | If specified, the pod’s scheduling constraints | {} |
api.nodeSelector | NodeSelector is a selector which must be true for the pod to fit on a node | {} |
api.tolerations | If specified, the pod’s tolerations | {} |
api.resources | The resource limit and request config for api server | {} |
api.configmap.API_SERVER_OPTS | The jvm options for api server | -Xms512m -Xmx512m -Xmn256m |
api.livenessProbe.enabled | Turn on and off liveness probe | true |
api.livenessProbe.initialDelaySeconds | Delay before liveness probe is initiated | 30 |
api.livenessProbe.periodSeconds | How often to perform the probe | 30 |
api.livenessProbe.timeoutSeconds | When the probe times out | 5 |
api.livenessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
api.livenessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
api.readinessProbe.enabled | Turn on and off readiness probe | true |
api.readinessProbe.initialDelaySeconds | Delay before readiness probe is initiated | 30 |
api.readinessProbe.periodSeconds | How often to perform the probe | 30 |
api.readinessProbe.timeoutSeconds | When the probe times out | 5 |
api.readinessProbe.failureThreshold | Minimum consecutive successes for the probe | 3 |
api.readinessProbe.successThreshold | Minimum consecutive failures for the probe | 1 |
api.persistentVolumeClaim.enabled | Set api.persistentVolumeClaim.enabled to true to mount a new volume for api | false |
api.persistentVolumeClaim.accessModes | PersistentVolumeClaim access modes | [ReadWriteOnce] |
api.persistentVolumeClaim.storageClassName | api logs data persistent volume storage class. If set to “-“, storageClassName: “”, which disables dynamic provisioning | - |
api.persistentVolumeClaim.storage | PersistentVolumeClaim size | 20Gi |
api.service.type | type determines how the Service is exposed. Valid options are ExternalName, ClusterIP, NodePort, and LoadBalancer | ClusterIP |
api.service.clusterIP | clusterIP is the IP address of the service and is usually assigned randomly by the master | nil |
api.service.nodePort | nodePort is the port on each node on which this service is exposed when type=NodePort | nil |
api.service.externalIPs | externalIPs is a list of IP addresses for which nodes in the cluster will also accept traffic for this service | [] |
api.service.externalName | externalName is the external reference that kubedns or equivalent will return as a CNAME record for this service | nil |
api.service.loadBalancerIP | loadBalancerIP when service.type is LoadBalancer. LoadBalancer will get created with the IP specified in this field | nil |
api.service.annotations | annotations may need to be set when service.type is LoadBalancer | {} |
ingress.enabled | Enable ingress | false |
ingress.host | Ingress host | dolphinscheduler.org |
ingress.path | Ingress path | /dolphinscheduler |
ingress.tls.enabled | Enable ingress tls | false |
ingress.tls.secretName | Ingress tls secret name | dolphinscheduler-tls |