- Data wrangling
- Building a transform process
- Executing a transformation
- Debugging
- Available transformations and conversions
- TransformProcess
- getFinalSchema
- getSchemaAfterStep
- toJson
- toYaml
- fromJson
- fromYaml
- transform
- filter
- filter
- removeColumns
- removeColumns
- removeAllColumnsExceptFor
- removeAllColumnsExceptFor
- renameColumn
- renameColumns
- reorderColumns
- duplicateColumn
- duplicateColumns
- integerMathOp
- integerColumnsMathOp
- longMathOp
- longColumnsMathOp
- floatMathOp
- floatColumnsMathOp
- floatMathFunction
- doubleMathOp
- doubleColumnsMathOp
- doubleMathFunction
- timeMathOp
- categoricalToOneHot
- categoricalToInteger
- integerToCategorical
- integerToCategorical
- integerToOneHot
- addConstantColumn
- addConstantDoubleColumn
- addConstantIntegerColumn
- addConstantLongColumn
- convertToString
- convertToDouble
- convertToInteger
- normalize
- convertToSequence
- convertToSequence
- convertToSequence
- convertFromSequence
- splitSequence
- trimSequence
- offsetSequence
- reduce
- reduceSequence
- reduceSequenceByWindow
- sequenceMovingWindowReduce
- calculateSortedRank
- calculateSortedRank
- stringToCategorical
- stringRemoveWhitespaceTransform
- stringMapTransform
- stringToTimeTransform
- stringToTimeTransform
- appendStringColumnTransform
- conditionalReplaceValueTransform
- conditionalReplaceValueTransformWithDefault
- conditionalCopyValueTransform
- replaceStringTransform
- ndArrayScalarOpTransform
- ndArrayColumnsMathOpTransform
- ndArrayMathFunctionTransform
- ndArrayDistanceTransform
- firstDigitTransform
- firstDigitTransform
- build
- TransformProcess
- CategoricalToIntegerTransform
- CategoricalToOneHotTransform
- IntegerToCategoricalTransform
- PivotTransform
- StringToCategoricalTransform
- AddConstantColumnTransform
- DuplicateColumnsTransform
- RemoveAllColumnsExceptForTransform
- RemoveColumnsTransform
- RenameColumnsTransform
- ReorderColumnsTransform
- ConditionalCopyValueTransform
- ConditionalReplaceValueTransform
- ConditionalReplaceValueTransformWithDefault
- ConvertToDouble
- DoubleColumnsMathOpTransform
- DoubleMathFunctionTransform
- DoubleMathOpTransform
- Log2Normalizer
- MinMaxNormalizer
- StandardizeNormalizer
- SubtractMeanNormalizer
- ConvertToInteger
- IntegerColumnsMathOpTransform
- IntegerMathOpTransform
- IntegerToOneHotTransform
- ReplaceEmptyIntegerWithValueTransform
- ReplaceInvalidWithIntegerTransform
- LongColumnsMathOpTransform
- LongMathOpTransform
- TextToCharacterIndexTransform
- TextToTermIndexSequenceTransform
- SequenceDifferenceTransform
- SequenceMovingWindowReduceTransform
- SequenceOffsetTransform
- AppendStringColumnTransform
- ChangeCaseStringTransform
- ConcatenateStringColumns
- ConvertToString
- MapAllStringsExceptListTransform
- RemoveWhiteSpaceTransform
- ReplaceEmptyStringTransform
- ReplaceStringTransform
- StringListToCategoricalSetTransform
- StringListToCountsNDArrayTransform
- StringListToIndicesNDArrayTransform
- StringMapTransform
- DeriveColumnsFromTimeTransform
- StringToTimeTransform
- TimeMathOpTransform
Data wrangling
One of the key tools in DataVec is transformations. DataVec helps the user map a dataset from one schema to another, and provides a list of operations to convert types, format data, and convert a 2D dataset to sequence data.
Building a transform process
A transform process requires a Schema
to successfully transform data. Both schema and transform process classes come with a helper Builder
class which are useful for organizing code and avoiding complex constructors.
When both are combined together they look like the sample code below. Note how inputDataSchema
is passed into the Builder
constructor. Your transform process will fail to compile without it.
import org.datavec.api.transform.TransformProcess;
TransformProcess tp = new TransformProcess.Builder(inputDataSchema)
.removeColumns("CustomerID","MerchantID")
.filter(new ConditionFilter(new CategoricalColumnCondition("MerchantCountryCode", ConditionOp.NotInSet, new HashSet<>(Arrays.asList("USA","CAN")))))
.conditionalReplaceValueTransform(
"TransactionAmountUSD", //Column to operate on
new DoubleWritable(0.0), //New value to use, when the condition is satisfied
new DoubleColumnCondition("TransactionAmountUSD",ConditionOp.LessThan, 0.0)) //Condition: amount < 0.0
.stringToTimeTransform("DateTimeString","YYYY-MM-DD HH:mm:ss.SSS", DateTimeZone.UTC)
.renameColumn("DateTimeString", "DateTime")
.transform(new DeriveColumnsFromTimeTransform.Builder("DateTime").addIntegerDerivedColumn("HourOfDay", DateTimeFieldType.hourOfDay()).build())
.removeColumns("DateTime")
.build();
Executing a transformation
Different “backends” for executors are available. Using the tp
transform process above, here’s how you can execute it locally using plain DataVec.
import org.datavec.local.transforms.LocalTransformExecutor;
List<List<Writable>> processedData = LocalTransformExecutor.execute(originalData, tp);
Debugging
Each operation in a transform process represents a “step” in schema changes. Sometimes, the resulting transformation is not the intended result. You can debug this by printing each step in the transform tp
with the following:
//Now, print the schema after each time step:
int numActions = tp.getActionList().size();
for(int i=0; i<numActions; i++ ){
System.out.println("\n\n==================================================");
System.out.println("-- Schema after step " + i + " (" + tp.getActionList().get(i) + ") --");
System.out.println(tp.getSchemaAfterStep(i));
}
Available transformations and conversions
TransformProcess
A TransformProcess definesan ordered list of transformationsto be executed on some data
getFinalSchema
public Schema getFinalSchema()
Get the action list that this transform processwill execute
- return
getSchemaAfterStep
public Schema getSchemaAfterStep(int step)
Return the schema after executing all steps up to and including the specified step.Steps are indexed from 0: so getSchemaAfterStep(0) is after one transform has been executed.
- param step Index of the step
- return Schema of the data, after that (and all prior) steps have been executed
toJson
public String toJson()
Execute the full sequence of transformations for a single example. May return null if example is filteredNOTE: Some TransformProcess operations cannot be done on examples individually. Most notably, ConvertToSequenceand ConvertFromSequence operations require the full data set to be processed at once
- param input
- return
toYaml
public String toYaml()
Convert the TransformProcess to a YAML string
- return TransformProcess, as YAML
fromJson
public static TransformProcess fromJson(String json)
Deserialize a JSON String (created by {- link #toJson()}) to a TransformProcess
- return TransformProcess, from JSON
fromYaml
public static TransformProcess fromYaml(String yaml)
Deserialize a JSON String (created by {- link #toJson()}) to a TransformProcess
- return TransformProcess, from JSON
transform
public Builder transform(Transform transform)
Infer the categories for the given record reader for a particular columnNote that each “column index” is a column in the context of:List
Note that anything passed in as a column will be automatically converted to astring for categorical purposes.
The expected input is strings or numbers (which have sensible toString() representations)
Note that the returned categories will be sorted alphabetically
- param recordReader the record reader to iterate through
- param columnIndex te column index to get categories for
- return
filter
public Builder filter(Filter filter)
Add a filter operation to be executed after the previously-added operations have been executed
- param filter Filter operation to execute
filter
public Builder filter(Condition condition)
Add a filter operation, based on the specified condition.
If condition is satisfied (returns true): remove the example or sequenceIf condition is not satisfied (returns false): keep the example or sequence
- param condition Condition to filter on
removeColumns
public Builder removeColumns(String... columnNames)
Remove all of the specified columns, by name
- param columnNames Names of the columns to remove
removeColumns
public Builder removeColumns(Collection<String> columnNames)
Remove all of the specified columns, by name
- param columnNames Names of the columns to remove
removeAllColumnsExceptFor
public Builder removeAllColumnsExceptFor(String... columnNames)
Remove all columns, except for those that are specified here
- param columnNames Names of the columns to keep
removeAllColumnsExceptFor
public Builder removeAllColumnsExceptFor(Collection<String> columnNames)
Remove all columns, except for those that are specified here
- param columnNames Names of the columns to keep
renameColumn
public Builder renameColumn(String oldName, String newName)
Rename a single column
- param oldName Original column name
- param newName New column name
renameColumns
public Builder renameColumns(List<String> oldNames, List<String> newNames)
Rename multiple columns
- param oldNames List of original column names
- param newNames List of new column names
reorderColumns
public Builder reorderColumns(String... newOrder)
Reorder the columns using a partial or complete new ordering.If only some of the column names are specified for the new order, the remaining columns will be placed atthe end, according to their current relative ordering
- param newOrder Names of the columns, in the order they will appear in the output
duplicateColumn
public Builder duplicateColumn(String column, String newName)
Duplicate a single column
- param column Name of the column to duplicate
- param newName Name of the new (duplicate) column
duplicateColumns
public Builder duplicateColumns(List<String> columnNames, List<String> newNames)
Duplicate a set of columns
- param columnNames Names of the columns to duplicate
- param newNames Names of the new (duplicated) columns
integerMathOp
public Builder integerMathOp(String column, MathOp mathOp, int scalar)
Perform a mathematical operation (add, subtract, scalar max etc) on the specified integer column, with a scalar
- param column The integer column to perform the operation on
- param mathOp The mathematical operation
- param scalar The scalar value to use in the mathematical operation
integerColumnsMathOp
public Builder integerColumnsMathOp(String newColumnName, MathOp mathOp, String... columnNames)
Calculate and add a new integer column by performing a mathematical operation on a number of existing columns.New column is added to the end.
- param newColumnName Name of the new/derived column
- param mathOp Mathematical operation to execute on the columns
- param columnNames Names of the columns to use in the mathematical operation
longMathOp
public Builder longMathOp(String columnName, MathOp mathOp, long scalar)
Perform a mathematical operation (add, subtract, scalar max etc) on the specified long column, with a scalar
- param columnName The long column to perform the operation on
- param mathOp The mathematical operation
- param scalar The scalar value to use in the mathematical operation
longColumnsMathOp
public Builder longColumnsMathOp(String newColumnName, MathOp mathOp, String... columnNames)
Calculate and add a new long column by performing a mathematical operation on a number of existing columns.New column is added to the end.
- param newColumnName Name of the new/derived column
- param mathOp Mathematical operation to execute on the columns
- param columnNames Names of the columns to use in the mathematical operation
floatMathOp
public Builder floatMathOp(String columnName, MathOp mathOp, float scalar)
Perform a mathematical operation (add, subtract, scalar max etc) on the specified double column, with a scalar
- param columnName The float column to perform the operation on
- param mathOp The mathematical operation
- param scalar The scalar value to use in the mathematical operation
floatColumnsMathOp
public Builder floatColumnsMathOp(String newColumnName, MathOp mathOp, String... columnNames)
Calculate and add a new float column by performing a mathematical operation on a number of existing columns.New column is added to the end.
- param newColumnName Name of the new/derived column
- param mathOp Mathematical operation to execute on the columns
- param columnNames Names of the columns to use in the mathematical operation
floatMathFunction
public Builder floatMathFunction(String columnName, MathFunction mathFunction)
Perform a mathematical operation (such as sin(x), ceil(x), exp(x) etc) on a column
- param columnName Column name to operate on
- param mathFunction MathFunction to apply to the column
doubleMathOp
public Builder doubleMathOp(String columnName, MathOp mathOp, double scalar)
Perform a mathematical operation (add, subtract, scalar max etc) on the specified double column, with a scalar
- param columnName The double column to perform the operation on
- param mathOp The mathematical operation
- param scalar The scalar value to use in the mathematical operation
doubleColumnsMathOp
public Builder doubleColumnsMathOp(String newColumnName, MathOp mathOp, String... columnNames)
Calculate and add a new double column by performing a mathematical operation on a number of existing columns.New column is added to the end.
- param newColumnName Name of the new/derived column
- param mathOp Mathematical operation to execute on the columns
- param columnNames Names of the columns to use in the mathematical operation
doubleMathFunction
public Builder doubleMathFunction(String columnName, MathFunction mathFunction)
Perform a mathematical operation (such as sin(x), ceil(x), exp(x) etc) on a column
- param columnName Column name to operate on
- param mathFunction MathFunction to apply to the column
timeMathOp
public Builder timeMathOp(String columnName, MathOp mathOp, long timeQuantity, TimeUnit timeUnit)
Perform a mathematical operation (add, subtract, scalar min/max only) on the specified time column
- param columnName The integer column to perform the operation on
- param mathOp The mathematical operation
- param timeQuantity The quantity used in the mathematical op
- param timeUnit The unit that timeQuantity is specified in
categoricalToOneHot
public Builder categoricalToOneHot(String... columnNames)
Convert the specified column(s) from a categorical representation to a one-hot representation.This involves the creation of multiple new columns each.
- param columnNames Names of the categorical column(s) to convert to a one-hot representation
categoricalToInteger
public Builder categoricalToInteger(String... columnNames)
Convert the specified column(s) from a categorical representation to an integer representation.This will replace the specified categorical column(s) with an integer repreesentation, whereeach integer has the value 0 to numCategories-1.
- param columnNames Name of the categorical column(s) to convert to an integer representation
integerToCategorical
public Builder integerToCategorical(String columnName, List<String> categoryStateNames)
Convert the specified column from an integer representation (assume values 0 to numCategories-1) toa categorical representation, given the specified state names
- param columnName Name of the column to convert
- param categoryStateNames Names of the states for the categorical column
integerToCategorical
public Builder integerToCategorical(String columnName, Map<Integer, String> categoryIndexNameMap)
Convert the specified column from an integer representation to a categorical representation, given the specifiedmapping between integer indexes and state names
- param columnName Name of the column to convert
- param categoryIndexNameMap Names of the states for the categorical column
integerToOneHot
public Builder integerToOneHot(String columnName, int minValue, int maxValue)
Convert an integer column to a set of 1 hot columns, based on the value in integer column
- param columnName Name of the integer column
- param minValue Minimum value possible for the integer column (inclusive)
- param maxValue Maximum value possible for the integer column (inclusive)
addConstantColumn
public Builder addConstantColumn(String newColumnName, ColumnType newColumnType, Writable fixedValue)
Add a new column, where all values in the column are identical and as specified.
- param newColumnName Name of the new column
- param newColumnType Type of the new column
- param fixedValue Value in the new column for all records
addConstantDoubleColumn
public Builder addConstantDoubleColumn(String newColumnName, double value)
Add a new double column, where the value for that column (for all records) are identical
- param newColumnName Name of the new column
- param value Value in the new column for all records
addConstantIntegerColumn
public Builder addConstantIntegerColumn(String newColumnName, int value)
Add a new integer column, where the value for that column (for all records) are identical
- param newColumnName Name of the new column
- param value Value of the new column for all records
addConstantLongColumn
public Builder addConstantLongColumn(String newColumnName, long value)
Add a new integer column, where the value for that column (for all records) are identical
- param newColumnName Name of the new column
- param value Value in the new column for all records
convertToString
public Builder convertToString(String inputColumn)
Convert the specified column to a string.
- param inputColumn the input column to convert
- return builder pattern
convertToDouble
public Builder convertToDouble(String inputColumn)
Convert the specified column to a double.
- param inputColumn the input column to convert
- return builder pattern
convertToInteger
public Builder convertToInteger(String inputColumn)
Convert the specified column to an integer.
- param inputColumn the input column to convert
- return builder pattern
normalize
public Builder normalize(String column, Normalize type, DataAnalysis da)
Normalize the specified column with a given type of normalization
- param column Column to normalize
- param type Type of normalization to apply
- param da DataAnalysis object
convertToSequence
public Builder convertToSequence(String keyColumn, SequenceComparator comparator)
Convert a set of independent records/examples into a sequence, according to some key.Within each sequence, values are ordered using the provided {- link SequenceComparator}
- param keyColumn Column to use as a key (values with the same key will be combined into sequences)
- param comparator A SequenceComparator to order the values within each sequence (for example, by time or String order)
convertToSequence
public Builder convertToSequence()
Convert a set of independent records/examples into a sequence; each example is simply treated as a sequenceof length 1, without any join/group operations. Note that more commonly, joining/grouping is required;use {- link #convertToSequence(List, SequenceComparator)} for this functionality
convertToSequence
public Builder convertToSequence(List<String> keyColumns, SequenceComparator comparator)
Convert a set of independent records/examples into a sequence, where each sequence is grouped according toone or more key values (i.e., the values in one or more columns)Within each sequence, values are ordered using the provided {- link SequenceComparator}
- param keyColumns Column to use as a key (values with the same key will be combined into sequences)
- param comparator A SequenceComparator to order the values within each sequence (for example, by time or String order)
convertFromSequence
public Builder convertFromSequence()
Convert a sequence to a set of individual values (by treating each value in each sequence as a separate example)
splitSequence
public Builder splitSequence(SequenceSplit split)
Split sequences into 1 or more other sequences. Used for example to split large sequences into a set of smaller sequences
- param split SequenceSplit that defines how splits will occur
trimSequence
public Builder trimSequence(int numStepsToTrim, boolean trimFromStart)
SequenceTrimTranform removes the first or last N values in a sequence. Note that the resulting sequencemay be of length 0, if the input sequence is less than or equal to N.
- param numStepsToTrim Number of time steps to trim from the sequence
- param trimFromStart If true: Trim values from the start of the sequence. If false: trim values from the end.
offsetSequence
public Builder offsetSequence(List<String> columnsToOffset, int offsetAmount,
SequenceOffsetTransform.OperationType operationType)
Perform a sequence of operation on the specified columns. Note that this also truncates sequences by thespecified offset amount by default. Use {- code transform(new SequenceOffsetTransform(…)} to change this.See {- link SequenceOffsetTransform} for details on exactly what this operation does and how.
- param columnsToOffset Columns to offset
- param offsetAmount Amount to offset the specified columns by (positive offset: ‘columnsToOffset’ aremoved to later time steps)
- param operationType Whether the offset should be done in-place or by adding a new column
reduce
public Builder reduce(IAssociativeReducer reducer)
Reduce (i.e., aggregate/combine) a set of examples (typically by key).Note: In the current implementation, reduction operations can be performed only on standard (i.e., non-sequence) data
- param reducer Reducer to use
reduceSequence
public Builder reduceSequence(IAssociativeReducer reducer)
Reduce (i.e., aggregate/combine) a set of sequence examples - for each sequence individually.Note: This method results in non-sequence data. If you would instead prefer sequences of length 1after the reduction, use {- code transform(new ReduceSequenceTransform(reducer))}.
- param reducer Reducer to use to reduce each window
reduceSequenceByWindow
public Builder reduceSequenceByWindow(IAssociativeReducer reducer, WindowFunction windowFunction)
Reduce (i.e., aggregate/combine) a set of sequence examples - for each sequence individually - using a window function.For example, take all records/examples in each 24-hour period (i.e., using window function), and convert them intoa singe value (using the reducer). In this example, the output is a sequence, with time period of 24 hours.
- param reducer Reducer to use to reduce each window
- param windowFunction Window function to find apply on each sequence individually
sequenceMovingWindowReduce
public Builder sequenceMovingWindowReduce(String columnName, int lookback, ReduceOp op)
SequenceMovingWindowReduceTransform: Adds a new column, where the value is derived by:(a) using a window of the last N values in a single column,(b) Apply a reduction op on the window to calculate a new valuefor example, this transformer can be used to implement a simple moving average of the last N values,or determine the minimum or maximum values in the last N time steps.
For example, for a simple moving average, length 20: {- code new SequenceMovingWindowReduceTransform(“myCol”, 20, ReduceOp.Mean)}
- param columnName Column name to perform windowing on
- param lookback Look back period for windowing
- param op Reduction operation to perform on each window
calculateSortedRank
public Builder calculateSortedRank(String newColumnName, String sortOnColumn, WritableComparator comparator)
CalculateSortedRank: calculate the rank of each example, after sorting example.For example, we might have some numerical “score” column, and we want to know for the rank (sort order) for eachexample, according to that column.The rank of each example (after sorting) will be added in a new Long column. Indexing is done from 0; examples will havevalues 0 to dataSetSize-1.
Currently, CalculateSortedRank can only be applied on standard (i.e., non-sequence) dataFurthermore, the current implementation can only sort on one column
- param newColumnName Name of the new column (will contain the rank for each example)
- param sortOnColumn Column to sort on
- param comparator Comparator used to sort examples
calculateSortedRank
public Builder calculateSortedRank(String newColumnName, String sortOnColumn, WritableComparator comparator,
boolean ascending)
CalculateSortedRank: calculate the rank of each example, after sorting example.For example, we might have some numerical “score” column, and we want to know for the rank (sort order) for eachexample, according to that column.The rank of each example (after sorting) will be added in a new Long column. Indexing is done from 0; examples will havevalues 0 to dataSetSize-1.
Currently, CalculateSortedRank can only be applied on standard (i.e., non-sequence) dataFurthermore, the current implementation can only sort on one column
- param newColumnName Name of the new column (will contain the rank for each example)
- param sortOnColumn Column to sort on
- param comparator Comparator used to sort examples
- param ascending If true: sort ascending. False: descending
stringToCategorical
public Builder stringToCategorical(String columnName, List<String> stateNames)
Convert the specified String column to a categorical column. The state names must be provided.
- param columnName Name of the String column to convert to categorical
- param stateNames State names of the category
stringRemoveWhitespaceTransform
public Builder stringRemoveWhitespaceTransform(String columnName)
Remove all whitespace characters from the values in the specified String column
- param columnName Name of the column to remove whitespace from
stringMapTransform
public Builder stringMapTransform(String columnName, Map<String, String> mapping)
Replace one or more String values in the specified column with new values.
Keys in the map are the original values; the Values in the map are their replacements.If a String appears in the data but does not appear in the provided map (as a key), that String values willnot be modified.
- param columnName Name of the column in which to do replacement
- param mapping Map of oldValues -> newValues
stringToTimeTransform
public Builder stringToTimeTransform(String column, String format, DateTimeZone dateTimeZone)
Convert a String column (containing a date/time String) to a time column (by parsing the date/time String)
- param column String column containing the date/time Strings
- param format Format of the strings. Time format is specified as per http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
- param dateTimeZone Timezone of the column
stringToTimeTransform
public Builder stringToTimeTransform(String column, String format, DateTimeZone dateTimeZone, Locale locale)
Convert a String column (containing a date/time String) to a time column (by parsing the date/time String)
- param column String column containing the date/time Strings
- param format Format of the strings. Time format is specified as per http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
- param dateTimeZone Timezone of the column
- param locale Locale of the column
appendStringColumnTransform
public Builder appendStringColumnTransform(String column, String toAppend)
Append a String to a specified column
- param column Column to append the value to
- param toAppend String to append to the end of each writable
conditionalReplaceValueTransform
public Builder conditionalReplaceValueTransform(String column, Writable newValue, Condition condition)
Replace the values in a specified column with a specified new value, if some condition holds.If the condition does not hold, the original values are not modified.
- param column Column to operate on
- param newValue Value to use as replacement, if condition is satisfied
- param condition Condition that must be satisfied for replacement
conditionalReplaceValueTransformWithDefault
public Builder conditionalReplaceValueTransformWithDefault(String column, Writable yesVal, Writable noVal, Condition condition)
Replace the values in a specified column with a specified “yes” value, if some condition holds.Replace it with a “no” value, otherwise.
- param column Column to operate on
- param yesVal Value to use as replacement, if condition is satisfied
- param noVal Value to use as replacement, if condition is not satisfied
- param condition Condition that must be satisfied for replacement
conditionalCopyValueTransform
public Builder conditionalCopyValueTransform(String columnToReplace, String sourceColumn, Condition condition)
Replace the value in a specified column with a new value taken from another column, if a condition is satisfied/true.Note that the condition can be any generic condition, including on other column(s), different to the columnthat will be modified if the condition is satisfied/true.
- param columnToReplace Name of the column in which values will be replaced (if condition is satisfied)
- param sourceColumn Name of the column from which the new values will be
- param condition Condition to use
replaceStringTransform
public Builder replaceStringTransform(String columnName, Map<String, String> mapping)
Replace one or more String values in the specified column that match regular expressions.
Keys in the map are the regular expressions; the Values in the map are their String replacements.For example:
Original Regex Replacement Result DataVec DataVec B1C2T3 \d one BoneConeTone '  4.25 ' ^\s+|\s+$ '4.25'
- param columnName Name of the column in which to do replacement
- param mapping Map of old values or regular expression to new values
ndArrayScalarOpTransform
public Builder ndArrayScalarOpTransform(String columnName, MathOp op, double value)
Element-wise NDArray math operation (add, subtract, etc) on an NDArray column
- param columnName Name of the NDArray column to perform the operation on
- param op Operation to perform
- param value Value for the operation
ndArrayColumnsMathOpTransform
public Builder ndArrayColumnsMathOpTransform(String newColumnName, MathOp mathOp, String... columnNames)
Perform an element wise mathematical operation (such as add, subtract, multiply) on NDArray columns.The existing columns are unchanged, a new NDArray column is added
- param newColumnName Name of the new NDArray column
- param mathOp Operation to perform
- param columnNames Name of the columns used as input to the operation
ndArrayMathFunctionTransform
public Builder ndArrayMathFunctionTransform(String columnName, MathFunction mathFunction)
Apply an element wise mathematical function (sin, tanh, abs etc) to an NDArray column. This operation isperformed in place.
- param columnName Name of the column to perform the operation on
- param mathFunction Mathematical function to apply
ndArrayDistanceTransform
public Builder ndArrayDistanceTransform(String newColumnName, Distance distance, String firstCol,
String secondCol)
Calculate a distance (cosine similarity, Euclidean, Manhattan) on two equal-sized NDArray columns. Thisoperation adds a new Double column (with the specified name) with the result.
- param newColumnName Name of the new column (result) to add
- param distance Distance to apply
- param firstCol first column to use in the distance calculation
- param secondCol second column to use in the distance calculation
firstDigitTransform
public Builder firstDigitTransform(String inputColumn, String outputColumn)
FirstDigitTransform converts a column to a categorical column, with values being the first digit of the number.For example, “3.1415” becomes “3” and “2.0” becomes “2”.Negative numbers ignore the sign: “-7.123” becomes “7”.Note that two {- link FirstDigitTransform.Mode}s are supported, which determines how non-numerical entries should be handled:EXCEPTION_ON_INVALID: output has 10 category values (“0”, …, “9”), and any non-numerical values result in an exceptionINCLUDE_OTHER_CATEGORY: output has 11 category values (“0”, …, “9”, “Other”), all non-numerical values are mapped to “Other”FirstDigitTransform is useful (combined with {- link CategoricalToOneHotTransform} and Reductions) to implementBenford’s law.
- param inputColumn Input column name
- param outputColumn Output column name. If same as input, input column is replaced
firstDigitTransform
public Builder firstDigitTransform(String inputColumn, String outputColumn, FirstDigitTransform.Mode mode)
FirstDigitTransform converts a column to a categorical column, with values being the first digit of the number.For example, “3.1415” becomes “3” and “2.0” becomes “2”.Negative numbers ignore the sign: “-7.123” becomes “7”.Note that two {- link FirstDigitTransform.Mode}s are supported, which determines how non-numerical entries should be handled:EXCEPTION_ON_INVALID: output has 10 category values (“0”, …, “9”), and any non-numerical values result in an exceptionINCLUDE_OTHER_CATEGORY: output has 11 category values (“0”, …, “9”, “Other”), all non-numerical values are mapped to “Other”FirstDigitTransform is useful (combined with {- link CategoricalToOneHotTransform} and Reductions) to implementBenford’s law.
- param inputColumn Input column name
- param outputColumn Output column name. If same as input, input column is replaced
- param mode See {- link FirstDigitTransform.Mode}
build
public TransformProcess build()
Create the TransformProcess object
CategoricalToIntegerTransform
Created by Alex on 4/03/2016.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
CategoricalToOneHotTransform
Created by Alex on 4/03/2016.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
IntegerToCategoricalTransform
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
PivotTransform
Pivot transform operates on two columns:
- a categorical column that operates as a key, and
- Another column that contains a valueEssentially, Pivot transform takes keyvalue pairs and breaks them out into separate columns.For example, with schema [col0, key, value, col3]and values with key in {a,b,c}Output schema is [col0, key[a], key[b], key[c], col3]and input (col0Val, b, x, col3Val) gets mapped to (col0Val, 0, x, 0, col3Val).
When expanding columns, a default value is used - for example 0 for numerical columns.
transform
public Schema transform(Schema inputSchema)
- param keyColumnName Key column to expand
- param valueColumnName Name of the column that contains the value
StringToCategoricalTransform
Convert a String columnto a categorical column
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
AddConstantColumnTransform
Add a new column, where the values in that column for all records are identical (according to the specified value)
DuplicateColumnsTransform
Duplicate one or more columns.The duplicated columnsare placed immediately after the original columns
transform
public Schema transform(Schema inputSchema)
- param columnsToDuplicate List of columns to duplicate
- param newColumnNames List of names for the new (duplicate) columns
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
RemoveAllColumnsExceptForTransform
Transform that removes all columns exceptfor those that are explicitlyspecified as ones to keepTo specify only the columns
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
RemoveColumnsTransform
Remove the specified columns from the data.To specify only the columns to keep,
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
RenameColumnsTransform
Rename one or more columns
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ReorderColumnsTransform
Rearrange the order of the columns.Note: A partial list of columns can be used here. Any columns that are not explicitly mentionedwill be placed after those that are in the output, without changing their relative order.
transform
public Schema transform(Schema inputSchema)
- param newOrder A partial or complete order of the columns in the output
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ConditionalCopyValueTransform
Replace the value in a specified column with a new value taken from another column, if a condition is satisfied/true.Note that the condition can be any generic condition, including on other column(s), different to the columnthat will be modified if the condition is satisfied/true.
Note: For sequences, thistransform use the convention thateach step in the sequence is passedto the condition,and replaced (or not) separately (i.e., Condition.condition(List
transform
public Schema transform(Schema inputSchema)
- param columnToReplace Name of the column in which to replace the old value
- param sourceColumn Name of the column to get the new value from
- param condition Condition
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ConditionalReplaceValueTransform
Replace the value in a specified column with a new value, if a condition is satisfied/true.Note that the condition can be any generic condition, including on other column(s), different to the columnthat will be modified if the condition is satisfied/true.
Note: For sequences, this transform use the convention that each step in the sequence is passed to the condition,and replaced (or not) separately (i.e., Condition.condition(List
transform
public Schema transform(Schema inputSchema)
- param columnToReplace Name of the column in which to replace the old value with ‘newValue’, if the condition holds
- param newValue New value to use
- param condition Condition
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ConditionalReplaceValueTransformWithDefault
Replace the value in a specified column with a ‘yes’ value, if a condition is satisfied/true.Replace the value of this same column with a ‘no’ value otherwise.Note that the condition can be any generic condition, including on other column(s), different to the columnthat will be modified if the condition is satisfied/true.
Note: For sequences, this transform use the convention that each step in the sequence is passed to the condition,and replaced (or not) separately (i.e., Condition.condition(List
ConvertToDouble
Convert any value to an Double
map
public DoubleWritable map(Writable writable)
- param column Name of the column to convert to a Double column
DoubleColumnsMathOpTransform
Add a new double column, calculated from one or more other columns. A new column (with the specified name) is addedas the final column of the output. No other columns are modified.For example, if newColumnName==”newCol”, mathOp==Add, and columns=={“col1”,”col2”}, then the output columnwith name “newCol” has value col1+col2.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
DoubleMathFunctionTransform
A simple transform to do common mathematical operations, such as sin(x), ceil(x), etc.
DoubleMathOpTransform
Double mathematical operation.This is an in-place operation of the double column value and a double scalar.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
Log2Normalizer
Normalize by taking scale log2((in-columnMin)/(mean-columnMin) + 1)Maps values in range (columnMin to infinity) to (0 to infinity)Most suitable for values with a geometric/negative exponential type distribution.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
MinMaxNormalizer
Normalizer to map (min to max) -> (newMin-to newMax) linearly.
Mathematically: (newMax-newMin)/(max-min) (x-min) + newMin
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
StandardizeNormalizer
Normalize using (x-mean)/stdev.Also known as a standard score, standardization etc.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
SubtractMeanNormalizer
Normalize by substracting the mean
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
ConvertToInteger
Convert any value to an Integer.
map
public IntWritable map(Writable writable)
- param column Name of the column to convert to an integer
IntegerColumnsMathOpTransform
Add a new integer column, calculated from one or more other columns.A new column (with the specified name) is addedas the final column of the output. No other columns are modified.For example, if newColumnName==”newCol”, mathOp==MathOp.Add, and columns=={“col1”,”col2”},then the output columnwith name “newCol” has value col1+col2.NOTE: Division here is usingif a decimal output value is required.
toString
public String toString()
- param newColumnName Name of the new column (output column)
- param mathOp Mathematical operation. Only Add/Subtract/Multiply/Divide/Modulus is allowed here
- param columns Columns to use in the mathematical operation
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
IntegerMathOpTransform
Integer mathematical operation.This is an in-place operation of the integer column value and an integer scalar.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
IntegerToOneHotTransform
Convert an integer column to a set of one-hot columns.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ReplaceEmptyIntegerWithValueTransform
Replace an empty/missing integer with a certain value.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
ReplaceInvalidWithIntegerTransform
Replace an invalid (non-integer) value in a column with a specified integer
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
LongColumnsMathOpTransform
Add a new long column, calculated from one or more other columns. A new column (with the specified name) is addedas the final column of the output. No other columns are modified.For example, if newColumnName==”newCol”, mathOp==MathOp.Add, and columns=={“col1”,”col2”}, then the output columnwith name “newCol” has value col1+col2.if a decimal output value is required.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
LongMathOpTransform
Long mathematical operation.This is an in-place operation of the long column value and an long scalar.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
TextToCharacterIndexTransform
Convert each text value in a sequence to a longer sequence of integer indices.For example, “abc” would be converted to [1, 2, 3]. Values in other columns will be duplicated.
TextToTermIndexSequenceTransform
Convert each text value in a sequence to a longer sequence of integer indices.For example, “zero one two” would be converted to [0, 1, 2]. Values in othercolumns will be duplicated.
SequenceDifferenceTransform
SequenceDifferenceTransform: for an input sequence, calculate the difference on one column.For each time t, calculate someColumn(t) - someColumn(t-s), where s >= 1 is the ‘lookback’ period.Note: at t=0 (i.e., the first step in a sequence; or more generally, for all times t < s), there is no previous valuethese time steps:
- Default: output = someColumn(t) - someColumn(max(t-s, 0))
- SpecifiedValue: output = someColumn(t) - someColumn(t-s) if t-s >= 0, or a custom Writable object (for example, a DoubleWritable(0)or NullWritable).Note: this is an in-place operation: i.e., the values in each column are modified. If the original values areand apply the difference operation in-place on the copy.
outputColumnName
public String outputColumnName()
Create a SequenceDifferenceTransform with default lookback of 1, and using FirstStepMode.Default.Output column name is the same as the input column name.
- param columnName Name of the column to perform the operation on.
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
SequenceMovingWindowReduceTransform
SequenceMovingWindowReduceTransform Adds a new column, where the value is derived by:(a) using a window of the last N values in a single column,(b) Apply a reduction op on the window to calculate a new valuefor example, this transformer can be used to implement a simple moving average of the last N values,or determine the minimum or maximum values in the last N time steps.
defaultOutputColumnName
public static String defaultOutputColumnName(String originalName, int lookback, ReduceOp op)
Enumeration to specify how each cases are handled: For example, for a look back period of 20, how should thefirst 19 output values be calculated?Default: Perform your former reduction as normal, with as many values are availableSpecifiedValue: use the given/specified value instead of the actual output value. For example, you could assignvalues of 0 or NullWritable to positions 0 through 18 of the output.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
SequenceOffsetTransform
Sequence offset transform takes a sequence, and shifts The values in one or more columns by a specified number oftimes steps. It has 2 modes of operation (OperationType enum), with respect to the columns it operates on:InPlace: operations may be performed in-place, modifying the values in the specified columnsNewColumn: operations may produce new columns, with the original (source) columns remaining unmodified
Additionally, there are 2 modes for handling values outside the original sequence (EdgeHandling enum):TrimSequence: the entire sequence is trimmed (start or end) by a specified number of stepsSpecifiedValue: for any values outside of the original sequence, they are given a specified value
Note 1: When specifying offsets, they are done as follows:Positive offsets: move the values in the specified columns to a later time. Earlier time steps are either be trimmedor Given specified values; the last values in these columns will be truncated/removed.
Note 2: Care must be taken when using TrimSequence: for example, if we chain multiple sequence offset transforms on theone dataset, we may end up trimming much more than we want. In this case, it may be better to use SpecifiedValue,at the end.
AppendStringColumnTransform
Append a String to thevalues in a single column
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
ChangeCaseStringTransform
Change case (to, e.g, all lower case) of String column.
ConcatenateStringColumns
Concatenate values of one or more String columns intoa new String column. Retains the constituent Stringcolumns so user must remove those manually, if desired.
TODO: use new String Reduce functionality in DataVec?
transform
public Schema transform(Schema inputSchema)
- param columnsToConcatenate A partial or complete order of the columns in the output
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
ConvertToString
Convert any value to a string.
map
public Text map(Writable writable)
Transform the writable in to astring
- param writable the writable to transform
- return the string form of this writable
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
MapAllStringsExceptListTransform
This method maps all String values, except those is the specified list, to a single String value
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
RemoveWhiteSpaceTransform
String transform that removes all whitespace charaters
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
ReplaceEmptyStringTransform
Replace empty String values with the specified String
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
ReplaceStringTransform
Replaces String values that match regular expressions.
map
public Text map(final Writable writable)
Constructs a new ReplaceStringTransform using the specified
- param columnName Name of the column
- param map Key: regular expression; Value: replacement value
StringListToCategoricalSetTransform
Convert a delimited String to a list of binary categorical columns.Suppose the possible String values were {“a”,”b”,”c”,”d”} and the String column value to be converted containedthe String “a,c”, then the 4 output columns would have values [“true”,”false”,”true”,”false”]
transform
public Schema transform(Schema inputSchema)
- param columnName The name of the column to convert
- param newColumnNames The names of the new columns to create
- param categoryTokens The possible tokens that may be present. Note this list must have the same length and orderas the newColumnNames list
- param delimiter The delimiter for the Strings to convert
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
StringListToCountsNDArrayTransform
Converts String column into a bag-of-words (BOW) represented as an NDArray of “counts.”Note that the original column is removed in the process
transform
public Schema transform(Schema inputSchema)
- param columnName The name of the column to convert
- param vocabulary The possible tokens that may be present.
- param delimiter The delimiter for the Strings to convert
- param ignoreUnknown Whether to ignore unknown tokens
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
outputColumnName
public String outputColumnName()
The output column nameafter the operation has been applied
- return the output column name
columnName
public String columnName()
The output column namesThis will often be the same as the input
- return the output column names
StringListToIndicesNDArrayTransform
Converts String column into a sparse bag-of-words (BOW)represented as an NDArray of indices. Appropriate forembeddings or as efficient storage before being expandedinto a dense array.
StringMapTransform
A simple String -> String map function.
Keys in the map are the original values; the Values in the map are their replacements.If a String appears in the data but does not appear in the provided map (as a key), that String values willnot be modified.
map
public Text map(Writable writable)
- param columnName Name of the column
- param map Key: From. Value: To
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
DeriveColumnsFromTimeTransform
Create a number of new columns by deriving their values from a Time column.Can be used for example to create new columns with the year, month, day, hour, minute, second etc.
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
mapSequence
public Object mapSequence(Object sequence)
Transform a sequence
- param sequence
toString
public String toString()
The output column nameafter the operation has been applied
- return the output column name
StringToTimeTransform
Convert a String column to a time column by parsing the date/time String, using a JodaTime.
Time format is specified as per http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
getNewColumnMetaData
public ColumnMetaData getNewColumnMetaData(String newName, ColumnMetaData oldColumnType)
Instantiate this without a time format specified.If this constructor is used, this transform will be allowedto handle several common transforms as defined in thestatic formats array.
- param columnName Name of the String column
- param timeZone Timezone for time parsing
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable
TimeMathOpTransform
Transform math op on a time column
Note: only the following MathOps are supported: Add, Subtract, ScalarMin, ScalarMaxFor ScalarMin/Max, the TimeUnit must be milliseconds - i.e., value must be in epoch millisecond format
map
public Object map(Object input)
Transform an objectin to another object
- param input the record to transform
- return the transformed writable