- What is an iterator?
- Usage
- Available iterators
- Cifar10DataSetIterator
- IrisDataSetIterator
- LFWDataSetIterator
- TinyImageNetDataSetIterator
- EmnistDataSetIterator
- RecordReaderDataSetIterator
- RecordReaderMultiDataSetIterator
- SequenceRecordReaderDataSetIterator
- AsyncMultiDataSetIterator
- IteratorDataSetIterator
- AsyncDataSetIterator
- DoublesDataSetIterator
- IteratorMultiDataSetIterator
- SamplingDataSetIterator
- INDArrayDataSetIterator
- WorkspacesShieldDataSetIterator
- MultiDataSetIteratorSplitter
- AsyncShieldDataSetIterator
- DummyBlockDataSetIterator
- CombinedPreProcessor
- BaseDatasetIterator
- AsyncShieldMultiDataSetIterator
- RandomMultiDataSetIterator
- EarlyTerminationMultiDataSetIterator
- CombinedMultiDataSetPreProcessor
- ExistingDataSetIterator
- DummyBlockMultiDataSetIterator
- EarlyTerminationDataSetIterator
- ReconstructionDataSetIterator
- DataSetIteratorSplitter
- JointMultiDataSetIterator
- DummyPreProcessor
- FloatsDataSetIterator
- FileSplitDataSetIterator
- DataSetFetcher
- MultipleEpochsIterator
- MultiDataSetWrapperIterator
- RandomDataSetIterator
- MultiDataSetIteratorAdapter
What is an iterator?
A dataset iterator allows for easy loading of data into neural networks and help organize batching, conversion, and masking. The iterators included in Eclipse Deeplearning4j help with either user-provided data, or automatic loading of common benchmarking datasets such as MNIST and IRIS.
Usage
For most use cases, initializing an iterator and passing a reference to a MultiLayerNetwork
or ComputationGraph
fit()
method is all you need to begin a task for training:
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
// pass an MNIST data iterator that automatically fetches data
DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true, rngSeed);
net.fit(mnistTrain);
Many other methods also accept iterators for tasks such as evaluation:
// passing directly to the neural network
DataSetIterator mnistTest = new MnistDataSetIterator(batchSize, false, rngSeed);
net.eval(mnistTest);
// using an evaluation class
Evaluation eval = new Evaluation(10); //create an evaluation object with 10 possible classes
while(mnistTest.hasNext()){
DataSet next = mnistTest.next();
INDArray output = model.output(next.getFeatureMatrix()); //get the networks prediction
eval.eval(next.getLabels(), output); //check the prediction against the true class
}
Available iterators
MnistDataSetIterator
MNIST data set iterator - 60000 training digits, 10000 test digits, 10 classes.Digits have 28x28 pixels and 1 channel (grayscale).For futher details, see http://yann.lecun.com/exdb/mnist/
UciSequenceDataSetIterator
UCI synthetic control chart time series dataset. This dataset is useful for classification of univariatetime series with six categories:Normal, Cyclic, Increasing trend, Decreasing trend, Upward shift, Downward shift
Details: https://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+SeriesData: https://archive.ics.uci.edu/ml/machine-learning-databases/synthetic_control-mld/synthetic_control.dataImage: https://archive.ics.uci.edu/ml/machine-learning-databases/synthetic_control-mld/data.jpeg
UciSequenceDataSetIterator
public UciSequenceDataSetIterator(int batchSize)
Create an iterator for the training set, with the specified minibatch size. Randomized with RNG seed 123
- param batchSize Minibatch size
Cifar10DataSetIterator
CifarDataSetIterator is an iterator for CIFAR-10 dataset - 10 classes, with 32x32 images with 3 channels (RGB)
This fetcher uses a cached version of the CIFAR dataset which is converted to PNG images,see: https://pjreddie.com/projects/cifar-10-dataset-mirror/.
Cifar10DataSetIterator
public Cifar10DataSetIterator(int batchSize)
Create an iterator for the training set, with random iteration order (RNG seed fixed to 123)
- param batchSize Minibatch size for the iterator
IrisDataSetIterator
IrisDataSetIterator: An iterator for the well-known Iris dataset. 4 features, 3 label classeshttps://archive.ics.uci.edu/ml/datasets/Iris
IrisDataSetIterator
public IrisDataSetIterator()
next
public DataSet next()
IrisDataSetIterator handles traversing through the Iris Data Set.
param batch Batch size
- param numExamples Total number of examples
LFWDataSetIterator
LFW iterator - Labeled Faces from the Wild datasetSee http://vis-www.cs.umass.edu/lfw/13233 images total, with 5749 classes.
LFWDataSetIterator
public LFWDataSetIterator(int batchSize, int numExamples, int[] imgDim, int numLabels, boolean useSubset,
PathLabelGenerator labelGenerator, boolean train, double splitTrainTest,
ImageTransform imageTransform, Random rng)
Create LFW data specific iterator
- param batchSize the batch size of the examples
- param numExamples the overall number of examples
- param imgDim an array of height, width and channels
- param numLabels the overall number of examples
- param useSubset use a subset of the LFWDataSet
- param labelGenerator path label generator to use
- param train true if use train value
- param splitTrainTest the percentage to split data for train and remainder goes to test
param imageTransform how to transform the image
param rng random number to lock in batch shuffling
TinyImageNetDataSetIterator
Tiny ImageNet is a subset of the ImageNet database. TinyImageNet is the default course challenge for CS321nat Stanford University.
Tiny ImageNet has 200 classes, each consisting of 500 training images.Images are 64x64 pixels, RGB.
See: http://cs231n.stanford.edu/ andhttps://tiny-imagenet.herokuapp.com/
TinyImageNetDataSetIterator
public TinyImageNetDataSetIterator(int batchSize)
Create an iterator for the training set, with random iteration order (RNG seed fixed to 123)
- param batchSize Minibatch size for the iterator
EmnistDataSetIterator
EMNIST DataSetIterator
- COMPLETE: Also known as 'ByClass' split. 814,255 examples total (train + test), 62 classes
- MERGE: Also known as 'ByMerge' split. 814,255 examples total. 47 unbalanced classes. Combines lower and uppercase characters (that are difficult to distinguish) into one class for each letter (instead of 2), for lettersC, I, J, K, L, M, O, P, S, U, V, W, X, Y and Z
- BALANCED: 131,600 examples total. 47 classes (equal number of examples in each class)
- LETTERS: 145,600 examples total. 26 balanced classes
- DIGITS: 280,000 examples total. 10 balanced classesSee: https://www.nist.gov/itl/iad/image-group/emnist-dataset andhttps://arxiv.org/abs/1702.05373
EmnistDataSetIterator
public EmnistDataSetIterator(Set dataSet, int batch, boolean train) throws IOException
EMNIST dataset has multiple different subsets. See {- link EmnistDataSetIterator} Javadoc for details.
numExamplesTrain
public static int numExamplesTrain(Set dataSet)
Create an EMNIST iterator with randomly shuffled data based on a specified RNG seed
- param dataSet Dataset (subset) to return
- param batchSize Batch size
- param train If true: use training set. If false: use test set
- param seed Random number generator seed
numExamplesTest
public static int numExamplesTest(Set dataSet)
Get the number of test examples for the specified subset
- param dataSet Subset to get
- return Number of examples for the specified subset
numLabels
public static int numLabels(Set dataSet)
Get the number of labels for the specified subset
- param dataSet Subset to get
- return Number of labels for the specified subset
isBalanced
public static boolean isBalanced(Set dataSet)
Get the labels as a character array
- return Labels
RecordReaderDataSetIterator
DataSet objects as well as producing minibatches from individual records.Example 1: Image classification, batch size 32, 10 classes
- rr.initialize(new FileSplit(new File("/path/to/directory")));
- DataSetIterator iter = new RecordReaderDataSetIterator.Builder(rr, 32)
- //Label index (first arg): Always value 1 when using ImageRecordReader. For CSV etc: use index of the column
- // that contains the label (should contain an integer value, 0 to nClasses-1 inclusive). Column indexes start
- // at 0. Number of classes (second arg): number of label classes (i.e., 10 for MNIST - 10 digits)
- .classification(1, nClasses)
- .preProcessor(new ImagePreProcessingScaler()) //For normalization of image values 0-255 to 0-1
- .build()
- }
Example 2: Multi-output regression from CSV, batch size 128
- rr.initialize(new FileSplit(new File("/path/to/myCsv.txt")));
- DataSetIterator iter = new RecordReaderDataSetIterator.Builder(rr, 128)
- //Specify the columns that the regression labels/targets appear in. Note that all other columns will be
- // treated as features. Columns indexes start at 0
- .regression(labelColFrom, labelColTo)
- .build()
- }
RecordReaderDataSetIterator
public RecordReaderDataSetIterator(RecordReader recordReader, int batchSize)
Constructor for classification, where:(a) the label index is assumed to be the very last Writable/column, and(b) the number of classes is inferred from RecordReader.getLabels()Note that if RecordReader.getLabels() returns null, no output labels will be produced
- param recordReader Record reader to use as the source of data
- param batchSize Minibatch size, for each call of .next()
setCollectMetaData
public void setCollectMetaData(boolean collectMetaData)
Main constructor for classification. This will convert the input class index (at position labelIndex, with integervalues 0 to numPossibleLabels-1 inclusive) to the appropriate one-hot output/labels representation.
- param recordReader RecordReader: provides the source of the data
- param batchSize Batch size (number of examples) for the output DataSet objects
- param labelIndex Index of the label Writable (usually an IntWritable), as obtained by recordReader.next()
- param numPossibleLabels Number of classes (possible labels) for classification
loadFromMetaData
public DataSet loadFromMetaData(RecordMetaData recordMetaData) throws IOException
Load a single example to a DataSet, using the provided RecordMetaData.Note that it is more efficient to load multiple instances at once, using {- link #loadFromMetaData(List)}
- param recordMetaData RecordMetaData to load from. Should have been produced by the given record reader
- return DataSet with the specified example
- throws IOException If an error occurs during loading of the data
loadFromMetaData
public DataSet loadFromMetaData(List<RecordMetaData> list) throws IOException
Load a multiple examples to a DataSet, using the provided RecordMetaData instances.
- param list List of RecordMetaData instances to load from. Should have been produced by the record reader providedto the RecordReaderDataSetIterator constructor
- return DataSet with the specified examples
- throws IOException If an error occurs during loading of the data
writableConverter
public Builder writableConverter(WritableConverter converter)
Builder class for RecordReaderDataSetIterator
maxNumBatches
public Builder maxNumBatches(int maxNumBatches)
Optional argument, usually not used. If set, can be used to limit the maximum number of minibatches thatwill be returned (between resets). If not set, will always return as many minibatches as there is dataavailable.
- param maxNumBatches Maximum number of minibatches per epoch / reset
regression
public Builder regression(int labelIndex)
Use this for single output regression (i.e., 1 output/regression target)
- param labelIndex Column index that contains the regression target (indexes start at 0)
regression
public Builder regression(int labelIndexFrom, int labelIndexTo)
Use this for multiple output regression (1 or more output/regression targets). Note that all regressiontargets must be contiguous (i.e., positions x to y, without gaps)
- param labelIndexFrom Column index of the first regression target (indexes start at 0)
- param labelIndexTo Column index of the last regression target (inclusive)
classification
public Builder classification(int labelIndex, int numClasses)
Use this for classification
- param labelIndex Index that contains the label index. Column (indexes start from 0) be an integer value,and contain values 0 to numClasses-1
- param numClasses Number of label classes (i.e., number of categories/classes in the dataset)
preProcessor
public Builder preProcessor(DataSetPreProcessor preProcessor)
Optional arg. Allows the preprocessor to be set
- param preProcessor Preprocessor to use
collectMetaData
public Builder collectMetaData(boolean collectMetaData)
When set to true: metadata for the current examples will be present in the returned DataSet.Disabled by default.
- param collectMetaData Whether metadata should be collected or not
RecordReaderMultiDataSetIterator
The idea: generate multiple inputs and multiple outputs from one or more Sequence/RecordReaders. Inputs and outputsmay be obtained from subsets of the RecordReader and SequenceRecordReaders columns (for examples, some inputs and outputsas different columns in the same record/sequence); it is also possible to mix different types of data (for example, using bothRecordReaders and SequenceRecordReaders in the same RecordReaderMultiDataSetIterator).inputs and subsets.
RecordReaderMultiDataSetIterator
public RecordReaderMultiDataSetIterator build()
When dealing with time series data of different lengths, how should we align the input/labels time series?For equal length: use EQUAL_LENGTHFor sequence classification: use ALIGN_END
loadFromMetaData
public MultiDataSet loadFromMetaData(RecordMetaData recordMetaData) throws IOException
Load a single example to a DataSet, using the provided RecordMetaData.Note that it is more efficient to load multiple instances at once, using {- link #loadFromMetaData(List)}
- param recordMetaData RecordMetaData to load from. Should have been produced by the given record reader
- return DataSet with the specified example
- throws IOException If an error occurs during loading of the data
loadFromMetaData
public MultiDataSet loadFromMetaData(List<RecordMetaData> list) throws IOException
Load a multiple sequence examples to a DataSet, using the provided RecordMetaData instances.
- param list List of RecordMetaData instances to load from. Should have been produced by the record reader providedto the SequenceRecordReaderDataSetIterator constructor
- return DataSet with the specified examples
- throws IOException If an error occurs during loading of the data
SequenceRecordReaderDataSetIterator
Sequence record reader data set iterator.Given a record reader (and optionally another record reader for the labels) generate time series (sequence) data sets.Supports padding for one-to-many and many-to-one type data loading (i.e., with different number of inputs vs.
SequenceRecordReaderDataSetIterator
public SequenceRecordReaderDataSetIterator(SequenceRecordReader featuresReader, SequenceRecordReader labels,
int miniBatchSize, int numPossibleLabels)
Constructor where features and labels come from different RecordReaders (for example, different files),and labels are for classification.
- param featuresReader SequenceRecordReader for the features
- param labels Labels: assume single value per time step, where values are integers in the range 0 to numPossibleLables-1
- param miniBatchSize Minibatch size for each call of next()
- param numPossibleLabels Number of classes for the labels
hasNext
public boolean hasNext()
Constructor where features and labels come from different RecordReaders (for example, different files)
loadFromMetaData
public DataSet loadFromMetaData(RecordMetaData recordMetaData) throws IOException
Load a single sequence example to a DataSet, using the provided RecordMetaData.Note that it is more efficient to load multiple instances at once, using {- link #loadFromMetaData(List)}
- param recordMetaData RecordMetaData to load from. Should have been produced by the given record reader
- return DataSet with the specified example
- throws IOException If an error occurs during loading of the data
loadFromMetaData
public DataSet loadFromMetaData(List<RecordMetaData> list) throws IOException
Load a multiple sequence examples to a DataSet, using the provided RecordMetaData instances.
- param list List of RecordMetaData instances to load from. Should have been produced by the record reader providedto the SequenceRecordReaderDataSetIterator constructor
- return DataSet with the specified examples
- throws IOException If an error occurs during loading of the data
AsyncMultiDataSetIterator
Async prefetching iterator wrapper for MultiDataSetIterator implementationsThis will asynchronously prefetch the specified number of minibatches from the underlying iterator.Also has the option (enabled by default for most constructors) to use a cyclical workspace to avoid creating INDArrayswith off-heap memory that needs to be cleaned up by the JVM garbage collector.
Note that appropriate DL4J fit methods automatically utilize this iterator, so users don’t need to manually wraptheir iterators when fitting a network
next
public MultiDataSet next(int num)
We want to ensure, that background thread will have the same thread->device affinity, as master thread
setPreProcessor
public void setPreProcessor(MultiDataSetPreProcessor preProcessor)
Set the preprocessor to be applied to each MultiDataSet, before each MultiDataSet is returned.
- param preProcessor MultiDataSetPreProcessor. May be null.
resetSupported
public boolean resetSupported()
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,but some don’t
- return true if reset method is supported; false otherwise
asyncSupported
public boolean asyncSupported()
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?Most DataSetIterators do, but in some cases it may not make sense to wrap this iterator in aniterator that does asynchronous prefetching. For example, it would not make sense to use asynchronousprefetching for the following types of iterators:(a) Iterators that store their full contents in memory already(b) Iterators that re-use features/labels arrays (as future next() calls will overwrite past contents)(c) Iterators that already implement some level of asynchronous prefetching(d) Iterators that may return different data depending on when the next() method is called
- return true if asynchronous prefetching from this iterator is OK; false if asynchronous prefetching should notbe used with this iterator
reset
public void reset()
Resets the iterator back to the beginning
shutdown
public void shutdown()
We want to ensure, that background thread will have the same thread->device affinity, as master thread
hasNext
public boolean hasNext()
Returns {- code true} if the iteration has more elements.(In other words, returns {- code true} if {- link #next} wouldreturn an element rather than throwing an exception.)
- return {- code true} if the iteration has more elements
next
public MultiDataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
- implSpec The default implementation throws an instance of{- link UnsupportedOperationException} and performs no other action.
IteratorDataSetIterator
required to get the specified batch size.
Typically used in Spark training, but may be used elsewhere.NOTE: reset method is not supported here.
AsyncDataSetIterator
Async prefetching iterator wrapper for DataSetIterator implementations.This will asynchronously prefetch the specified number of minibatches from the underlying iterator.Also has the option (enabled by default for most constructors) to use a cyclical workspace to avoid creating INDArrayswith off-heap memory that needs to be cleaned up by the JVM garbage collector.
Note that appropriate DL4J fit methods automatically utilize this iterator, so users don’t need to manually wraptheir iterators when fitting a network
AsyncDataSetIterator
public AsyncDataSetIterator(DataSetIterator baseIterator)
Create an Async iterator with the default queue size of 8
- param baseIterator Underlying iterator to wrap and fetch asynchronously from
next
public DataSet next(int num)
Create an Async iterator with the default queue size of 8
- param iterator Underlying iterator to wrap and fetch asynchronously from
- param queue Queue size - number of iterators to
inputColumns
public int inputColumns()
Input columns for the dataset
- return
totalOutcomes
public int totalOutcomes()
The number of labels for the dataset
- return
resetSupported
public boolean resetSupported()
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,but some don’t
- return true if reset method is supported; false otherwise
asyncSupported
public boolean asyncSupported()
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?Most DataSetIterators do, but in some cases it may not make sense to wrap this iterator in aniterator that does asynchronous prefetching. For example, it would not make sense to use asynchronousprefetching for the following types of iterators:(a) Iterators that store their full contents in memory already(b) Iterators that re-use features/labels arrays (as future next() calls will overwrite past contents)(c) Iterators that already implement some level of asynchronous prefetching(d) Iterators that may return different data depending on when the next() method is called
- return true if asynchronous prefetching from this iterator is OK; false if asynchronous prefetching should notbe used with this iterator
reset
public void reset()
Resets the iterator back to the beginning
shutdown
public void shutdown()
We want to ensure, that background thread will have the same thread->device affinity, as master thread
batch
public int batch()
Batch size
- return
setPreProcessor
public void setPreProcessor(DataSetPreProcessor preProcessor)
Set a pre processor
- param preProcessor a pre processor to set
getPreProcessor
public DataSetPreProcessor getPreProcessor()
Returns preprocessors, if defined
- return
hasNext
public boolean hasNext()
Get dataset iterator record reader labels
next
public DataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
- implSpec The default implementation throws an instance of{- link UnsupportedOperationException} and performs no other action.
DoublesDataSetIterator
First value in pair is the features vector, second value in pair is the labels.Supports generating 2d features/labels only
DoublesDataSetIterator
public DoublesDataSetIterator(@NonNull Iterable<Pair<double[], double[]>> iterable, int batchSize)
- param iterable Iterable to source data from
- param batchSize Batch size for generated DataSet objects
IteratorMultiDataSetIterator
required to get a specified batch size.
Typically used in Spark training, but may be used elsewhere.NOTE: reset method is not supported here.
SamplingDataSetIterator
A wrapper for a dataset to sample from.This will randomly sample from the given dataset.
SamplingDataSetIterator
public SamplingDataSetIterator(DataSet sampleFrom, int batchSize, int totalNumberSamples)
INDArrayDataSetIterator
First value in pair is the features vector, second value in pair is the labels.
INDArrayDataSetIterator
public INDArrayDataSetIterator(@NonNull Iterable<Pair<INDArray, INDArray>> iterable, int batchSize)
- param iterable Iterable to source data from
- param batchSize Batch size for generated DataSet objects
WorkspacesShieldDataSetIterator
This iterator detaches/migrates DataSets coming out from backed DataSetIterator, thus providing “safe” DataSets.This is typically used for debugging and testing purposes, and should not be used in general by users
WorkspacesShieldDataSetIterator
public WorkspacesShieldDataSetIterator(@NonNull DataSetIterator iterator)
- param iterator The underlying iterator to detach values from
MultiDataSetIteratorSplitter
This iterator virtually splits given MultiDataSetIterator into Train and Test parts.I.e. you have 100000 examples. Your batch size is 32. That means you have 3125 total batches. With split ratio of 0.7 that will give you 2187 training batches, and 938 test batches.
PLEASE NOTE: You can’t use Test iterator twice in a row. Train iterator should be used before Test iterator use.PLEASE NOTE: You can’t use this iterator, if underlying iterator uses randomization/shuffle between epochs.
MultiDataSetIteratorSplitter
public MultiDataSetIteratorSplitter(@NonNull MultiDataSetIterator baseIterator, long totalBatches, double ratio)
- param baseIterator
- param totalBatches - total number of batches in underlying iterator. this value will be used to determine number of test/train batches
- param ratio - this value will be used as splitter. should be between in range of 0.0 > X < 1.0. I.e. if value 0.7 is provided, then 70% of total examples will be used for training, and 30% of total examples will be used for testing
getTrainIterator
public MultiDataSetIterator getTrainIterator()
This method returns train iterator instance
- return
next
public MultiDataSet next(int num)
This method returns test iterator instance
- return
AsyncShieldDataSetIterator
This wrapper takes your existing DataSetIterator implementation and prevents asynchronous prefetchThis is mainly used for debugging purposes; generally an iterator that isn’t safe to asynchronously prefetch from
AsyncShieldDataSetIterator
public AsyncShieldDataSetIterator(@NonNull DataSetIterator iterator)
- param iterator Iterator to wrop, to disable asynchronous prefetching for
next
public DataSet next(int num)
Like the standard next method but allows acustomizable number of examples returned
- param num the number of examples
- return the next data applyTransformToDestination
inputColumns
public int inputColumns()
Input columns for the dataset
- return
totalOutcomes
public int totalOutcomes()
The number of labels for the dataset
- return
resetSupported
public boolean resetSupported()
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,but some don’t
- return true if reset method is supported; false otherwise
asyncSupported
public boolean asyncSupported()
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
PLEASE NOTE: This iterator ALWAYS returns FALSE
- return true if asynchronous prefetching from this iterator is OK; false if asynchronous prefetching should notbe used with this iterator
reset
public void reset()
Resets the iterator back to the beginning
batch
public int batch()
Batch size
- return
setPreProcessor
public void setPreProcessor(DataSetPreProcessor preProcessor)
Set a pre processor
- param preProcessor a pre processor to set
getPreProcessor
public DataSetPreProcessor getPreProcessor()
Returns preprocessors, if defined
- return
hasNext
public boolean hasNext()
Get dataset iterator record reader labels
next
public DataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
- implSpec The default implementation throws an instance of{- link UnsupportedOperationException} and performs no other action.
DummyBlockDataSetIterator
This class provides baseline implementation of BlockDataSetIterator interface
CombinedPreProcessor
This is special preProcessor, that allows to combine multiple prerpocessors, and apply them to data sequentially.
CombinedPreProcessor
public CombinedPreProcessor build()
Pre process a dataset sequentially
- param toPreProcess the data set to pre process
BaseDatasetIterator
Baseline implementation includescontrol over the data fetcher and some basicgetters for metadata
AsyncShieldMultiDataSetIterator
This wrapper takes your existing MultiDataSetIterator implementation and prevents asynchronous prefetch
next
public MultiDataSet next(int num)
Fetch the next ‘num’ examples. Similar to the next method, but returns a specified number of examples
- param num Number of examples to fetch
setPreProcessor
public void setPreProcessor(MultiDataSetPreProcessor preProcessor)
Set the preprocessor to be applied to each MultiDataSet, before each MultiDataSet is returned.
- param preProcessor MultiDataSetPreProcessor. May be null.
resetSupported
public boolean resetSupported()
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,but some don’t
- return true if reset method is supported; false otherwise
asyncSupported
public boolean asyncSupported()
/Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
PLEASE NOTE: This iterator ALWAYS returns FALSE
- return true if asynchronous prefetching from this iterator is OK; false if asynchronous prefetching should notbe used with this iterator
reset
public void reset()
Resets the iterator back to the beginning
hasNext
public boolean hasNext()
Returns {- code true} if the iteration has more elements.(In other words, returns {- code true} if {- link #next} wouldreturn an element rather than throwing an exception.)
- return {- code true} if the iteration has more elements
next
public MultiDataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
- implSpec The default implementation throws an instance of{- link UnsupportedOperationException} and performs no other action.
RandomMultiDataSetIterator
RandomMultiDataSetIterator: Generates random values (or zeros, ones, integers, etc) according to some distribution.Note: This is typically used for testing, debugging and benchmarking purposes.
RandomMultiDataSetIterator
public RandomMultiDataSetIterator(int numMiniBatches, @NonNull List<Triple<long[], Character, Values>> features, @NonNull List<Triple<long[], Character, Values>> labels)
- param numMiniBatches Number of minibatches per epoch
- param features Each triple in the list specifies the shape, array order and type of values for the features arrays
- param labels Each triple in the list specifies the shape, array order and type of values for the labels arrays
addFeatures
public Builder addFeatures(long[] shape, Values values)
- param numMiniBatches Number of minibatches per epoch
addFeatures
public Builder addFeatures(long[] shape, char order, Values values)
Add a new features array to the iterator
- param shape Shape of the features
- param order Order (‘c’ or ‘f’) for the array
- param values Values to fill the array with
addLabels
public Builder addLabels(long[] shape, Values values)
Add a new labels array to the iterator
- param shape Shape of the features
- param values Values to fill the array with
addLabels
public Builder addLabels(long[] shape, char order, Values values)
Add a new labels array to the iterator
- param shape Shape of the features
- param order Order (‘c’ or ‘f’) for the array
- param values Values to fill the array with
generate
public static INDArray generate(long[] shape, Values values)
Generate a random array with the specified shape
- param shape Shape of the array
- param values Values to fill the array with
- return Random array of specified shape + contents
generate
public static INDArray generate(long[] shape, char order, Values values)
Generate a random array with the specified shape and order
- param shape Shape of the array
- param order Order of array (‘c’ or ‘f’)
- param values Values to fill the array with
- return Random array of specified shape + contents
EarlyTerminationMultiDataSetIterator
Builds an iterator that terminates once the number of minibatches returned with .next() is equal to a specified number.Note that a call to .next(num) is counted as a call to return a minibatch regardless of the value of numThis essentially restricts the data to this specified number of minibatches.
EarlyTerminationMultiDataSetIterator
public EarlyTerminationMultiDataSetIterator(MultiDataSetIterator underlyingIterator, int terminationPoint)
Constructor takes the iterator to wrap and the number of minibatches after which the call to hasNext()will return false
- param underlyingIterator, iterator to wrap
- param terminationPoint, minibatches after which hasNext() will return false
CombinedMultiDataSetPreProcessor
Combines various multidataset preprocessorsApplied in the order they are specified to in the builder
CombinedMultiDataSetPreProcessor
public CombinedMultiDataSetPreProcessor build()
- param preProcessor to be added to list of preprocessors to be applied
ExistingDataSetIterator
ExistingDataSetIterator
public ExistingDataSetIterator(@NonNull Iterator<DataSet> iterator)
Note that when using this constructor, resetting is not supported
- param iterator Iterator to wrap
next
public DataSet next(int num)
Note that when using this constructor, resetting is not supported
- param iterator Iterator to wrap
- param labels String labels. May be null.
DummyBlockMultiDataSetIterator
This class provides baseline implementation of BlockMultiDataSetIterator interface
EarlyTerminationDataSetIterator
Builds an iterator that terminates once the number of minibatches returned with .next() is equal to a specified number.Note that a call to .next(num) is counted as a call to return a minibatch regardless of the value of numThis essentially restricts the data to this specified number of minibatches.
EarlyTerminationDataSetIterator
public EarlyTerminationDataSetIterator(DataSetIterator underlyingIterator, int terminationPoint)
Constructor takes the iterator to wrap and the number of minibatches after which the call to hasNext()will return false
- param underlyingIterator, iterator to wrap
- param terminationPoint, minibatches after which hasNext() will return false
ReconstructionDataSetIterator
Wraps a data set iterator setting the first (feature matrix) as the labels.
next
public DataSet next(int num)
Like the standard next method but allows acustomizable number of examples returned
- param num the number of examples
- return the next data applyTransformToDestination
inputColumns
public int inputColumns()
Input columns for the dataset
- return
totalOutcomes
public int totalOutcomes()
The number of labels for the dataset
- return
reset
public void reset()
Resets the iterator back to the beginning
batch
public int batch()
Batch size
- return
hasNext
public boolean hasNext()
Returns {- code true} if the iteration has more elements.(In other words, returns {- code true} if {- link #next} wouldreturn an element rather than throwing an exception.)
- return {- code true} if the iteration has more elements
next
public DataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
DataSetIteratorSplitter
This iterator virtually splits given MultiDataSetIterator into Train and Test parts.I.e. you have 100000 examples. Your batch size is 32. That means you have 3125 total batches. With split ratio of 0.7 that will give you 2187 training batches, and 938 test batches.
PLEASE NOTE: You can’t use Test iterator twice in a row. Train iterator should be used before Test iterator use.PLEASE NOTE: You can’t use this iterator, if underlying iterator uses randomization/shuffle between epochs.
DataSetIteratorSplitter
public DataSetIteratorSplitter(@NonNull DataSetIterator baseIterator, long totalBatches, double ratio)
The only constructor
- param baseIterator - iterator to be wrapped and split
- param totalBatches - total batches in baseIterator
- param ratio - train/test split ratio
getTrainIterator
public DataSetIterator getTrainIterator()
This method returns train iterator instance
- return
next
public DataSet next(int i)
This method returns test iterator instance
- return
JointMultiDataSetIterator
This dataset iterator combines multiple DataSetIterators into 1 MultiDataSetIterator.Values from each iterator are joined on a per-example basis - i.e., the values from each DataSet are combinedas different feature arrays for a multi-input neural network.Labels can come from either one of the underlying DataSetIteartors only (if ‘outcome’ is >= 0) or from alliterators (if outcome is < 0)
JointMultiDataSetIterator
public JointMultiDataSetIterator(DataSetIterator... iterators)
- param iterators Underlying iterators to wrap
next
public MultiDataSet next(int num)
- param outcome Index to get the label from. If < 0, labels from all iterators will be used to create thefinal MultiDataSet
- param iterators Underlying iterators to wrap
setPreProcessor
public void setPreProcessor(MultiDataSetPreProcessor preProcessor)
Set the preprocessor to be applied to each MultiDataSet, before each MultiDataSet is returned.
- param preProcessor MultiDataSetPreProcessor. May be null.
getPreProcessor
public MultiDataSetPreProcessor getPreProcessor()
Get the {- link MultiDataSetPreProcessor}, if one has previously been set.Returns null if no preprocessor has been set
- return Preprocessor
resetSupported
public boolean resetSupported()
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,but some don’t
- return true if reset method is supported; false otherwise
asyncSupported
public boolean asyncSupported()
Does this MultiDataSetIterator support asynchronous prefetching of multiple MultiDataSet objects?Most MultiDataSetIterators do, but in some cases it may not make sense to wrap this iterator in aniterator that does asynchronous prefetching. For example, it would not make sense to use asynchronousprefetching for the following types of iterators:(a) Iterators that store their full contents in memory already(b) Iterators that re-use features/labels arrays (as future next() calls will overwrite past contents)(c) Iterators that already implement some level of asynchronous prefetching(d) Iterators that may return different data depending on when the next() method is called
- return true if asynchronous prefetching from this iterator is OK; false if asynchronous prefetching should notbe used with this iterator
reset
public void reset()
Resets the iterator back to the beginning
hasNext
public boolean hasNext()
Returns {- code true} if the iteration has more elements.(In other words, returns {- code true} if {- link #next} wouldreturn an element rather than throwing an exception.)
- return {- code true} if the iteration has more elements
next
public MultiDataSet next()
Returns the next element in the iteration.
- return the next element in the iteration
remove
public void remove()
PLEASE NOTE: This method is NOT implemented
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
- implSpec The default implementation throws an instance of{- link UnsupportedOperationException} and performs no other action.
DummyPreProcessor
This is special dummy preProcessor, that does nothing.
preProcess
public void preProcess(DataSet toPreProcess)
Pre process a dataset
- param toPreProcess the data set to pre process
FloatsDataSetIterator
First value in pair is the features vector, second value in pair is the labels.Supports generating 2d features/labels only
FloatsDataSetIterator
public FloatsDataSetIterator(@NonNull Iterable<Pair<float[], float[]>> iterable, int batchSize)
- param iterable Iterable to source data from
- param batchSize Batch size for generated DataSet objects
FileSplitDataSetIterator
Simple iterator working with list of files.File to DataSet conversion will be handled via provided FileCallback implementation
FileSplitDataSetIterator
public FileSplitDataSetIterator(@NonNull List<File> files, @NonNull FileCallback callback)
- param files List of files to iterate over
- param callback Callback for loading the files
DataSetFetcher
A low level interface for loading datasets in to memory.
This is used by an DataSetIterator to handle the specifics of loading data in to memory.
MultipleEpochsIterator
A dataset iterator for doing multiple passes over a dataset
Use MultiLayerNetwork/ComputationGraph.fit(DataSetIterator, int numEpochs) instead
next
public DataSet next(int num)
Like the standard next method but allows acustomizable number of examples returned
- param num the number of examples
- return the next data applyTransformToDestination
inputColumns
public int inputColumns()
Input columns for the dataset
- return
totalOutcomes
public int totalOutcomes()
The number of labels for the dataset
- return
reset
public void reset()
Resets the iterator back to the beginning
batch
public int batch()
Batch size
- return
hasNext
public boolean hasNext()
Returns {- code true} if the iteration has more elements.(In other words, returns {- code true} if {- link #next} wouldreturn an element rather than throwing an exception.)
- return {- code true} if the iteration has more elements
remove
public void remove()
Removes from the underlying collection the last element returnedby this iterator (optional operation). This method can be calledonly once per call to {- link #next}. The behavior of an iteratoris unspecified if the underlying collection is modified while theiteration is in progress in any way other than by calling thismethod.
- throws UnsupportedOperationException if the {- code remove}operation is not supported by this iterator
- throws IllegalStateException if the {- code next} method has notyet been called, or the {- code remove} method has alreadybeen called after the last call to the {- code next}method
MultiDataSetWrapperIterator
This class is simple wrapper that takes single-input MultiDataSets and converts them to DataSets on the fly
PLEASE NOTE: This only works if number of features/labels/masks is 1
MultiDataSetWrapperIterator
public MultiDataSetWrapperIterator(MultiDataSetIterator iterator)
- param iterator Undelying iterator to wrap
RandomDataSetIterator
RandomDataSetIterator: Generates random values (or zeros, ones, integers, etc) according to some distribution.Note: This is typically used for testing, debugging and benchmarking purposes.
RandomDataSetIterator
public RandomDataSetIterator(int numMiniBatches, long[] featuresShape, long[] labelsShape, Values featureValues, Values labelValues)
- param numMiniBatches Number of minibatches per epoch
- param featuresShape Features shape
- param labelsShape Labels shape
- param featureValues Type of values for the features
- param labelValues Type of values for the labels
MultiDataSetIteratorAdapter
Iterator that adapts a DataSetIterator to a MultiDataSetIterator