开始使用 Dapr 客户端 Python SDK
如何使用 Dapr Python SDK 启动和运行
Dapr 客户端包允许您从 Python 应用程序中与其他 Dapr 应用程序进行交互。
注意
如果你还没有,请尝试使用一个快速入门快速了解如何使用 Dapr Python SDK 与 API 构建块。
前期准备
在开始之前,请安装 Dapr Python 包。
导入客户端包
dapr
包包含 DaprClient
,该工具包将用于创建和使用客户端。
from dapr.clients import DaprClient
初始化客户端
您可以以多种方式初始化 Dapr 客户端:
默认值:
当您在不带任何参数的情况下初始化客户端时,它将使用默认值作为 Dapr sidecar 实例(127.0.0.1:50001
)。
from dapr.clients import DaprClient
with DaprClient() as d:
# use the client
在初始化时指定一个端点:
当作为构造函数的参数传递时,gRPC端点优先于任何配置或环境变量。
from dapr.clients import DaprClient
with DaprClient("mydomain:50051?tls=true") as d:
# use the client
环境变量:
Dapr Sidecar 终端点
您可以使用标准化的DAPR_GRPC_ENDPOINT
环境变量来指定gRPC端点。 当设置了这个变量时,客户端可以在没有任何参数的情况下进行初始化:
export DAPR_GRPC_ENDPOINT="mydomain:50051?tls=true"
from dapr.clients import DaprClient
with DaprClient() as d:
# the client will use the endpoint specified in the environment variables
遗留的环境变量 DAPR_RUNTIME_HOST
、DAPR_HTTP_PORT
和 DAPR_GRPC_PORT
也被支持,但是 DAPR_GRPC_ENDPOINT
优先级更高。
Dapr API 令牌
如果您的 Dapr 实例配置需要 DAPR_API_TOKEN
环境变量,您可以在环境中设置它,客户端将自动使用它。
您可以在此处阅读有关 Dapr API 令牌身份验证的更多信息(链接)。
健康超时
在客户端初始化时,会对Dapr sidecar(/healthz/outboud
)进行健康检查。 客户端将在 sidecar 启动并运行后继续进行。
默认超时时间为60秒,但可以通过设置DAPR_HEALTH_TIMEOUT
环境变量来覆盖。
错误处理
最初,Dapr中的错误遵循了标准的gRPC错误模型。 然而,为了提供更详细和信息丰富的错误消息,在版本1.13中引入了一个增强的错误模型,与gRPC的更丰富的错误模型保持一致。 作为回应,Python SDK 实现了 DaprGrpcError
,一个专门设计用于改善开发者体验的自定义异常类。
需要注意的是,将所有gRPC状态异常转换为DaprGrpcError
仍在进行中。 目前,SDK中并非每个API调用都已更新以利用此自定义异常。 我们正在积极推进这项改进,并欢迎社区的贡献。
使用 Dapr python-SDK 时处理 DaprGrpcError
异常的示例:
try:
d.save_state(store_name=storeName, key=key, value=value)
except DaprGrpcError as err:
print(f'Status code: {err.code()}')
print(f"Message: {err.message()}")
print(f"Error code: {err.error_code()}")
print(f"Error info(reason): {err.error_info.reason}")
print(f"Resource info (resource type): {err.resource_info.resource_type}")
print(f"Resource info (resource name): {err.resource_info.resource_name}")
print(f"Bad request (field): {err.bad_request.field_violations[0].field}")
print(f"Bad request (description): {err.bad_request.field_violations[0].description}")
构建块
Python SDK 允许您与所有的Dapr构建块}进行接口交互。
调用服务
Dapr Python SDK 提供了一个简单的 API,用于通过 HTTP 或 gRPC(已弃用)调用服务。 可以通过设置 DAPR_API_METHOD_INVOCATION_PROTOCOL
环境变量来选择协议,默认情况下未设置时为HTTP。 在 Dapr 中,GRPC 服务调用已被弃用,推荐使用 GRPC 代理作为替代方案。
from dapr.clients import DaprClient
with DaprClient() as d:
# invoke a method (gRPC or HTTP GET)
resp = d.invoke_method('service-to-invoke', 'method-to-invoke', data='{"message":"Hello World"}')
# for other HTTP verbs the verb must be specified
# invoke a 'POST' method (HTTP only)
resp = d.invoke_method('service-to-invoke', 'method-to-invoke', data='{"id":"100", "FirstName":"Value", "LastName":"Value"}', http_verb='post')
HTTP api调用的基本终结点在DAPR_HTTP_ENDPOINT
环境变量中指定。 如果未设置此变量,则端点值将从DAPR_RUNTIME_HOST
和DAPR_HTTP_PORT
变量中派生,其默认值分别为127.0.0.1
和3500
。
gRPC调用的基本终端点是用于客户端初始化的终端点(上面解释了)。
- 有关服务调用的完整指南,请访问操作方法: 调用服务。
- 访问Python SDK示例获取代码示例和指南,尝试服务调用。
保存和获取应用程序状态
from dapr.clients import DaprClient
with DaprClient() as d:
# Save state
d.save_state(store_name="statestore", key="key1", value="value1")
# Get state
data = d.get_state(store_name="statestore", key="key1").data
# Delete state
d.delete_state(store_name="statestore", key="key1")
- 有关状态操作的完整列表,请访问 操作方法:获取和保存状态.
- 访问Python SDK示例获取代码示例和说明,以尝试状态管理。
查询应用程序状态(Alpha)
from dapr import DaprClient
query = '''
{
"filter": {
"EQ": { "state": "CA" }
},
"sort": [
{
"key": "person.id",
"order": "DESC"
}
]
}
'''
with DaprClient() as d:
resp = d.query_state(
store_name='state_store',
query=query,
states_metadata={"metakey": "metavalue"}, # optional
)
- 有关状态存储查询选项的完整列表,请访问 操作方法:查询状态.
- 访问Python SDK示例获取代码示例和指南,尝试使用状态存储查询。
发布和订阅消息
发布消息
from dapr.clients import DaprClient
with DaprClient() as d:
resp = d.publish_event(pubsub_name='pubsub', topic_name='TOPIC_A', data='{"message":"Hello World"}')
订阅消息
from cloudevents.sdk.event import v1
from dapr.ext.grpc import App
import json
app = App()
# Default subscription for a topic
@app.subscribe(pubsub_name='pubsub', topic='TOPIC_A')
def mytopic(event: v1.Event) -> None:
data = json.loads(event.Data())
print(f'Received: id={data["id"]}, message="{data ["message"]}"'
' content_type="{event.content_type}"',flush=True)
# Specific handler using Pub/Sub routing
@app.subscribe(pubsub_name='pubsub', topic='TOPIC_A',
rule=Rule("event.type == \"important\"", 1))
def mytopic_important(event: v1.Event) -> None:
data = json.loads(event.Data())
print(f'Received: id={data["id"]}, message="{data ["message"]}"'
' content_type="{event.content_type}"',flush=True)
- 有关发布/订阅的更多信息,请访问 操作方法:发布 & 订阅.
- 访问Python SDK示例获取代码示例和说明,以尝试发布/订阅。
与输出绑定交互
from dapr.clients import DaprClient
with DaprClient() as d:
resp = d.invoke_binding(binding_name='kafkaBinding', operation='create', data='{"message":"Hello World"}')
- 有关输出绑定的完整指南,请访问操作方法:使用绑定。
- 访问Python SDK示例获取代码示例和指南,尝试使用输出绑定。
检索密钥
from dapr.clients import DaprClient
with DaprClient() as d:
resp = d.get_secret(store_name='localsecretstore', key='secretKey')
- 有关秘密的完整指南,请访问操作方法: 检索秘密。
- 访问Python SDK示例获取代码示例和指南,尝试检索秘密
Configuration
获取配置
from dapr.clients import DaprClient
with DaprClient() as d:
# Get Configuration
configuration = d.get_configuration(store_name='configurationstore', keys=['orderId'], config_metadata={})
订阅配置
import asyncio
from time import sleep
from dapr.clients import DaprClient
async def executeConfiguration():
with DaprClient() as d:
storeName = 'configurationstore'
key = 'orderId'
# Wait for sidecar to be up within 20 seconds.
d.wait(20)
# Subscribe to configuration by key.
configuration = await d.subscribe_configuration(store_name=storeName, keys=[key], config_metadata={})
while True:
if configuration != None:
items = configuration.get_items()
for key, item in items:
print(f"Subscribe key={key} value={item.value} version={item.version}", flush=True)
else:
print("Nothing yet")
sleep(5)
asyncio.run(executeConfiguration())
- 了解有关通过 操作方法:管理配置 指导。
- 访问Python SDK示例获取代码示例和指南,尝试配置。
分布式锁
from dapr.clients import DaprClient
def main():
# Lock parameters
store_name = 'lockstore' # as defined in components/lockstore.yaml
resource_id = 'example-lock-resource'
client_id = 'example-client-id'
expiry_in_seconds = 60
with DaprClient() as dapr:
print('Will try to acquire a lock from lock store named [%s]' % store_name)
print('The lock is for a resource named [%s]' % resource_id)
print('The client identifier is [%s]' % client_id)
print('The lock will will expire in %s seconds.' % expiry_in_seconds)
with dapr.try_lock(store_name, resource_id, client_id, expiry_in_seconds) as lock_result:
assert lock_result.success, 'Failed to acquire the lock. Aborting.'
print('Lock acquired successfully!!!')
# At this point the lock was released - by magic of the `with` clause ;)
unlock_result = dapr.unlock(store_name, resource_id, client_id)
print('We already released the lock so unlocking will not work.')
print('We tried to unlock it anyway and got back [%s]' % unlock_result.status)
- 了解有关使用分布式锁的详细信息:操作方法:使用锁.
- 访问Python SDK示例获取代码示例和指南,尝试使用分布式锁。
Workflow
from dapr.ext.workflow import WorkflowRuntime, DaprWorkflowContext, WorkflowActivityContext
from dapr.clients import DaprClient
instanceId = "exampleInstanceID"
workflowComponent = "dapr"
workflowName = "hello_world_wf"
eventName = "event1"
eventData = "eventData"
def main():
with DaprClient() as d:
host = settings.DAPR_RUNTIME_HOST
port = settings.DAPR_GRPC_PORT
workflowRuntime = WorkflowRuntime(host, port)
workflowRuntime = WorkflowRuntime()
workflowRuntime.register_workflow(hello_world_wf)
workflowRuntime.register_activity(hello_act)
workflowRuntime.start()
# Start the workflow
start_resp = d.start_workflow(instance_id=instanceId, workflow_component=workflowComponent,
workflow_name=workflowName, input=inputData, workflow_options=workflowOptions)
print(f"start_resp {start_resp.instance_id}")
# ...
# Pause Test
d.pause_workflow(instance_id=instanceId, workflow_component=workflowComponent)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after pause call: {getResponse.runtime_status}")
# Resume Test
d.resume_workflow(instance_id=instanceId, workflow_component=workflowComponent)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after resume call: {getResponse.runtime_status}")
sleep(1)
# Raise event
d.raise_workflow_event(instance_id=instanceId, workflow_component=workflowComponent,
event_name=eventName, event_data=eventData)
sleep(5)
# Purge Test
d.purge_workflow(instance_id=instanceId, workflow_component=workflowComponent)
try:
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
except DaprInternalError as err:
if nonExistentIDError in err._message:
print("Instance Successfully Purged")
# Kick off another workflow for termination purposes
# This will also test using the same instance ID on a new workflow after
# the old instance was purged
start_resp = d.start_workflow(instance_id=instanceId, workflow_component=workflowComponent,
workflow_name=workflowName, input=inputData, workflow_options=workflowOptions)
print(f"start_resp {start_resp.instance_id}")
# Terminate Test
d.terminate_workflow(instance_id=instanceId, workflow_component=workflowComponent)
sleep(1)
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
print(f"Get response from {workflowName} after terminate call: {getResponse.runtime_status}")
# Purge Test
d.purge_workflow(instance_id=instanceId, workflow_component=workflowComponent)
try:
getResponse = d.get_workflow(instance_id=instanceId, workflow_component=workflowComponent)
except DaprInternalError as err:
if nonExistentIDError in err._message:
print("Instance Successfully Purged")
workflowRuntime.shutdown()
- 了解更多关于编写和管理工作流的信息:
- 访问Python SDK示例获取代码示例和指南,尝试使用Dapr工作流。