How-To: Set up Azure Monitor to search logs and collect metrics
Enable Dapr metrics and logs with Azure Monitor for Azure Kubernetes Service (AKS)
Prerequisites
Enable Prometheus metric scrape using config map
- Make sure that omsagents are running
$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
...
omsagent-75qjs 1/1 Running 1 44h
omsagent-c7c4t 1/1 Running 0 44h
omsagent-rs-74f488997c-dshpx 1/1 Running 1 44h
omsagent-smtk7 1/1 Running 1 44h
...
- Apply config map to enable Prometheus metrics endpoint scrape.
You can use azm-config-map.yaml to enable prometheus metrics endpoint scrape.
If you installed Dapr to the different namespace, you need to change the monitor_kubernetes_pod_namespaces
array values. For example:
...
prometheus-data-collection-settings: |-
[prometheus_data_collection_settings.cluster]
interval = "1m"
monitor_kubernetes_pods = true
monitor_kubernetes_pods_namespaces = ["dapr-system", "default"]
[prometheus_data_collection_settings.node]
interval = "1m"
...
Apply config map:
kubectl apply -f ./azm-config.map.yaml
Install Dapr with JSON formatted logs
- Install Dapr with enabling JSON-formatted logs
helm install dapr dapr/dapr --namespace dapr-system --set global.logAsJson=true
- Enable JSON formatted log in Dapr sidecar and add Prometheus annotations.
Note: OMS Agent scrapes the metrics only if replicaset has Prometheus annotations.
Add dapr.io/log-as-json: "true"
annotation to your deployment yaml.
Example:
apiVersion: apps/v1
kind: Deployment
metadata:
name: pythonapp
namespace: default
labels:
app: python
spec:
replicas: 1
selector:
matchLabels:
app: python
template:
metadata:
labels:
app: python
annotations:
dapr.io/enabled: "true"
dapr.io/app-id: "pythonapp"
dapr.io/log-as-json: "true"
prometheus.io/scrape: "true"
prometheus.io/port: "9090"
prometheus.io/path: "/"
...
Search metrics and logs with Azure Monitor
Go to Azure Monitor
Search Dapr logs
Here is an example query, to parse JSON formatted logs and query logs from dapr system processes.
ContainerLog
| extend parsed=parse_json(LogEntry)
| project Time=todatetime(parsed['time']), app_id=parsed['app_id'], scope=parsed['scope'],level=parsed['level'], msg=parsed['msg'], type=parsed['type'], ver=parsed['ver'], instance=parsed['instance']
| where level != ""
| sort by Time
- Search metrics
This query, queries process_resident_memory_bytes Prometheus metrics for Dapr system processes and renders timecharts
InsightsMetrics
| where Namespace == "prometheus" and Name == "process_resident_memory_bytes"
| extend tags=parse_json(Tags)
| project TimeGenerated, Name, Val, app=tostring(tags['app'])
| summarize memInBytes=percentile(Val, 99) by bin(TimeGenerated, 1m), app
| where app startswith "dapr-"
| render timechart
References
- Configure scraping of Prometheus metrics with Azure Monitor for containers
- Configure agent data collection for Azure Monitor for containers
- Azure Monitor Query
Last modified October 11, 2022: Update to observability docs for OTEL (#2876) (4d860db7)