算法
排序
排序算法 | 平均时间复杂度 | 最差时间复杂度 | 空间复杂度 | 数据对象稳定性 |
---|---|---|---|---|
冒泡排序 | O(n2) | O(n2) | O(1) | 稳定 |
选择排序 | O(n2) | O(n2) | O(1) | 数组不稳定、链表稳定 |
插入排序 | O(n2) | O(n2) | O(1) | 稳定 |
快速排序 | O(n*log2n) | O(n2) | O(log2n) | 不稳定 |
堆排序 | O(n*log2n) | O(n*log2n) | O(1) | 不稳定 |
归并排序 | O(n*log2n) | O(n*log2n) | O(n) | 稳定 |
希尔排序 | O(n*log2n) | O(n2) | O(1) | 不稳定 |
计数排序 | O(n+m) | O(n+m) | O(n+m) | 稳定 |
桶排序 | O(n) | O(n) | O(m) | 稳定 |
基数排序 | O(k*n) | O(n2) | 稳定 |
- 均按从小到大排列
- k:代表数值中的 “数位” 个数
- n:代表数据规模
- m:代表数据的最大值减最小值
- 来自:wikipedia . 排序算法
查找
查找算法 | 平均时间复杂度 | 空间复杂度 | 查找条件 |
---|---|---|---|
顺序查找 | O(n) | O(1) | 无序或有序 |
二分查找(折半查找) | O(log2n) | O(1) | 有序 |
插值查找 | O(log2(log2n)) | O(1) | 有序 |
斐波那契查找 | O(log2n) | O(1) | 有序 |
哈希查找 | O(1) | O(n) | 无序或有序 |
二叉查找树(二叉搜索树查找) | O(log2n) | ||
红黑树 | O(log2n) | ||
2-3树 | O(log2n - log3n) | ||
B树/B+树 | O(log2n) |
图搜索算法
图搜索算法 | 数据结构 | 遍历时间复杂度 | 空间复杂度 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BFS广度优先搜索 | 邻接矩阵 邻接链表 |
O(\ | v\ | 2) O(\ |
v\ | +\ | E\ | ) | O(\ | v\ | 2) O(\ |
v\ | +\ | E\ | ) |
DFS深度优先搜索 | 邻接矩阵 邻接链表 |
O(\ | v\ | 2) O(\ |
v\ | +\ | E\ | ) | O(\ | v\ | 2) O(\ |
v\ | +\ | E\ | ) |
其他算法
算法 | 思想 | 应用 |
---|---|---|
分治法 | 把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并 | 循环赛日程安排问题、排序算法(快速排序、归并排序) |
动态规划 | 通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法,适用于有重叠子问题和最优子结构性质的问题 | 背包问题、斐波那契数列 |
贪心法 | 一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法 | 旅行推销员问题(最短路径问题)、最小生成树、哈夫曼编码 |