Machine Learning Functions
evalMLMethod
Prediction using fitted regression models uses evalMLMethod
function. See link in linearRegression
.
stochasticLinearRegression
The stochasticLinearRegression aggregate function implements stochastic gradient descent method using linear model and MSE loss function. Uses evalMLMethod
to predict on new data.
stochasticLogisticRegression
The stochasticLogisticRegression aggregate function implements stochastic gradient descent method for binary classification problem. Uses evalMLMethod
to predict on new data.
bayesAB
Compares test groups (variants) and calculates for each group the probability to be the best one. The first group is used as a control group.
Syntax
bayesAB(distribution_name, higher_is_better, variant_names, x, y)
Arguments
distribution_name
— Name of the probability distribution. String. Possible values:beta
for Beta distributiongamma
for Gamma distribution
higher_is_better
— Boolean flag. Boolean. Possible values:0
— lower values are considered to be better than higher1
— higher values are considered to be better than lower
x
— Numbers of tests for the corresponding variants. Array(Float64).y
— Numbers of successful tests for the corresponding variants. Array(Float64).
Note
All three arrays must have the same size. All x
and y
values must be non-negative constant numbers. y
cannot be larger than x
.
Returned values
For each variant the function calculates:
- beats_control
— long-term probability to out-perform the first (control) variant
- to_be_best
— long-term probability to out-perform all other variants
Type: JSON.
Example
Query:
SELECT bayesAB('beta', 1, ['Control', 'A', 'B'], [3000., 3000., 3000.], [100., 90., 110.]) FORMAT PrettySpace;
Result:
{
"data":[
{
"variant_name":"Control",
"x":3000,
"y":100,
"beats_control":0,
"to_be_best":0.22619
},
{
"variant_name":"A",
"x":3000,
"y":90,
"beats_control":0.23469,
"to_be_best":0.04671
},
{
"variant_name":"B",
"x":3000,
"y":110,
"beats_control":0.7580899999999999,
"to_be_best":0.7271
}
]
}