Float32, Float64
Types are equivalent to types of C:
Float32
—float
.Float64
—double
.
We recommend that you store data in integer form whenever possible. For example, convert fixed precision numbers to integer values, such as monetary amounts or page load times in milliseconds.
Aliases:
Float32
—FLOAT
.Float64
—DOUBLE
.
When creating tables, numeric parameters for floating point numbers can be set (e.g. FLOAT(12)
, FLOAT(15, 22)
, DOUBLE(12)
, DOUBLE(4, 18)
), but ClickHouse ignores them.
Using Floating-point Numbers
- Computations with floating-point numbers might produce a rounding error.
SELECT 1 - 0.9
┌───────minus(1, 0.9)─┐
│ 0.09999999999999998 │
└─────────────────────┘
- The result of the calculation depends on the calculation method (the processor type and architecture of the computer system).
- Floating-point calculations might result in numbers such as infinity (
Inf
) and “not-a-number” (NaN
). This should be taken into account when processing the results of calculations. - When parsing floating-point numbers from text, the result might not be the nearest machine-representable number.
NaN and Inf
In contrast to standard SQL, ClickHouse supports the following categories of floating-point numbers:
Inf
– Infinity.
SELECT 0.5 / 0
┌─divide(0.5, 0)─┐
│ inf │
└────────────────┘
-Inf
— Negative infinity.
SELECT -0.5 / 0
┌─divide(-0.5, 0)─┐
│ -inf │
└─────────────────┘
NaN
— Not a number.
SELECT 0 / 0
┌─divide(0, 0)─┐
│ nan │
└──────────────┘
See the rules for NaN
sorting in the section ORDER BY clause.
当前内容版权归 ClickHouse 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 ClickHouse .