JOIN Clause
Join produces a new table by combining columns from one or multiple tables by using values common to each. It is a common operation in databases with SQL support, which corresponds to relational algebra join. The special case of one table join is often referred to as “self-join”.
Syntax:
SELECT <expr_list>
FROM <left_table>
[GLOBAL] [INNER|LEFT|RIGHT|FULL|CROSS] [OUTER|SEMI|ANTI|ANY|ASOF] JOIN <right_table>
(ON <expr_list>)|(USING <column_list>) ...
Expressions from ON
clause and columns from USING
clause are called “join keys”. Unless otherwise stated, join produces a Cartesian product from rows with matching “join keys”, which might produce results with much more rows than the source tables.
Supported Types of JOIN
All standard SQL JOIN) types are supported:
INNER JOIN
, only matching rows are returned.LEFT OUTER JOIN
, non-matching rows from left table are returned in addition to matching rows.RIGHT OUTER JOIN
, non-matching rows from right table are returned in addition to matching rows.FULL OUTER JOIN
, non-matching rows from both tables are returned in addition to matching rows.CROSS JOIN
, produces cartesian product of whole tables, “join keys” are not specified.
JOIN
without specified type implies INNER
. Keyword OUTER
can be safely omitted. Alternative syntax for CROSS JOIN
is specifying multiple tables in FROM clause separated by commas.
Additional join types available in ClickHouse:
LEFT SEMI JOIN
andRIGHT SEMI JOIN
, a whitelist on “join keys”, without producing a cartesian product.LEFT ANTI JOIN
andRIGHT ANTI JOIN
, a blacklist on “join keys”, without producing a cartesian product.LEFT ANY JOIN
,RIGHT ANY JOIN
andINNER ANY JOIN
, partially (for opposite side ofLEFT
andRIGHT
) or completely (forINNER
andFULL
) disables the cartesian product for standardJOIN
types.ASOF JOIN
andLEFT ASOF JOIN
, joining sequences with a non-exact match.ASOF JOIN
usage is described below.
Setting
Note
The default join type can be overriden using join_default_strictness setting.
Also the behavior of ClickHouse server for ANY JOIN
operations depends on the any_join_distinct_right_table_keys setting.
ASOF JOIN Usage
ASOF JOIN
is useful when you need to join records that have no exact match.
Algorithm requires the special column in tables. This column:
- Must contain an ordered sequence.
- Can be one of the following types: Int, UInt, Float*, Date, DateTime, Decimal*.
- Can’t be the only column in the
JOIN
clause.
Syntax ASOF JOIN ... ON
:
SELECT expressions_list
FROM table_1
ASOF LEFT JOIN table_2
ON equi_cond AND closest_match_cond
You can use any number of equality conditions and exactly one closest match condition. For example, SELECT count() FROM table_1 ASOF LEFT JOIN table_2 ON table_1.a == table_2.b AND table_2.t <= table_1.t
.
Conditions supported for the closest match: >
, >=
, <
, <=
.
Syntax ASOF JOIN ... USING
:
SELECT expressions_list
FROM table_1
ASOF JOIN table_2
USING (equi_column1, ... equi_columnN, asof_column)
ASOF JOIN
uses equi_columnX
for joining on equality and asof_column
for joining on the closest match with the table_1.asof_column >= table_2.asof_column
condition. The asof_column
column always the last one in the USING
clause.
For example, consider the following tables:
table_1 table_2
event | ev_time | user_id event | ev_time | user_id
----------|---------|---------- ----------|---------|----------
... ...
event_1_1 | 12:00 | 42 event_2_1 | 11:59 | 42
... event_2_2 | 12:30 | 42
event_1_2 | 13:00 | 42 event_2_3 | 13:00 | 42
... ...
ASOF JOIN
can take the timestamp of a user event from table_1
and find an event in table_2
where the timestamp is closest to the timestamp of the event from table_1
corresponding to the closest match condition. Equal timestamp values are the closest if available. Here, the user_id
column can be used for joining on equality and the ev_time
column can be used for joining on the closest match. In our example, event_1_1
can be joined with event_2_1
and event_1_2
can be joined with event_2_3
, but event_2_2
can’t be joined.
Note
ASOF
join is not supported in the Join table engine.
Distributed Join
There are two ways to execute join involving distributed tables:
- When using a normal
JOIN
, the query is sent to remote servers. Subqueries are run on each of them in order to make the right table, and the join is performed with this table. In other words, the right table is formed on each server separately. - When using
GLOBAL ... JOIN
, first the requestor server runs a subquery to calculate the right table. This temporary table is passed to each remote server, and queries are run on them using the temporary data that was transmitted.
Be careful when using GLOBAL
. For more information, see the Distributed subqueries section.
Usage Recommendations
Processing of Empty or NULL Cells
While joining tables, the empty cells may appear. The setting join_use_nulls define how ClickHouse fills these cells.
If the JOIN
keys are Nullable fields, the rows where at least one of the keys has the value NULL are not joined.
Syntax
The columns specified in USING
must have the same names in both subqueries, and the other columns must be named differently. You can use aliases to change the names of columns in subqueries.
The USING
clause specifies one or more columns to join, which establishes the equality of these columns. The list of columns is set without brackets. More complex join conditions are not supported.
Syntax Limitations
For multiple JOIN
clauses in a single SELECT
query:
- Taking all the columns via
*
is available only if tables are joined, not subqueries. - The
PREWHERE
clause is not available.
For ON
, WHERE
, and GROUP BY
clauses:
- Arbitrary expressions cannot be used in
ON
,WHERE
, andGROUP BY
clauses, but you can define an expression in aSELECT
clause and then use it in these clauses via an alias.
Performance
When running a JOIN
, there is no optimization of the order of execution in relation to other stages of the query. The join (a search in the right table) is run before filtering in WHERE
and before aggregation.
Each time a query is run with the same JOIN
, the subquery is run again because the result is not cached. To avoid this, use the special Join table engine, which is a prepared array for joining that is always in RAM.
In some cases, it is more efficient to use IN instead of JOIN
.
If you need a JOIN
for joining with dimension tables (these are relatively small tables that contain dimension properties, such as names for advertising campaigns), a JOIN
might not be very convenient due to the fact that the right table is re-accessed for every query. For such cases, there is an “external dictionaries” feature that you should use instead of JOIN
. For more information, see the External dictionaries section.
Memory Limitations
By default, ClickHouse uses the hash join algorithm. ClickHouse takes the <right_table>
and creates a hash table for it in RAM. After some threshold of memory consumption, ClickHouse falls back to merge join algorithm.
If you need to restrict join operation memory consumption use the following settings:
- max_rows_in_join — Limits number of rows in the hash table.
- max_bytes_in_join — Limits size of the hash table.
When any of these limits is reached, ClickHouse acts as the join_overflow_mode setting instructs.
Examples
Example:
SELECT
CounterID,
hits,
visits
FROM
(
SELECT
CounterID,
count() AS hits
FROM test.hits
GROUP BY CounterID
) ANY LEFT JOIN
(
SELECT
CounterID,
sum(Sign) AS visits
FROM test.visits
GROUP BY CounterID
) USING CounterID
ORDER BY hits DESC
LIMIT 10
┌─CounterID─┬───hits─┬─visits─┐
│ 1143050 │ 523264 │ 13665 │
│ 731962 │ 475698 │ 102716 │
│ 722545 │ 337212 │ 108187 │
│ 722889 │ 252197 │ 10547 │
│ 2237260 │ 196036 │ 9522 │
│ 23057320 │ 147211 │ 7689 │
│ 722818 │ 90109 │ 17847 │
│ 48221 │ 85379 │ 4652 │
│ 19762435 │ 77807 │ 7026 │
│ 722884 │ 77492 │ 11056 │
└───────────┴────────┴────────┘