HDFS
This engine provides integration with Apache Hadoop ecosystem by allowing to manage data on HDFSvia ClickHouse. This engine is similar
to the File and URL engines, but provides Hadoop-specific features.
Usage
ENGINE = HDFS(URI, format)
The URI
parameter is the whole file URI in HDFS.
The format
parameter specifies one of the available file formats. To performSELECT
queries, the format must be supported for input, and to performINSERT
queries – for output. The available formats are listed in the
Formats section.
The path part of URI
may contain globs. In this case the table would be readonly.
Example:
1. Set up the hdfs_engine_table
table:
CREATE TABLE hdfs_engine_table (name String, value UInt32) ENGINE=HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')
2. Fill file:
INSERT INTO hdfs_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
3. Query the data:
SELECT * FROM hdfs_engine_table LIMIT 2
┌─name─┬─value─┐
│ one │ 1 │
│ two │ 2 │
└──────┴───────┘
Implementation Details
- Reads and writes can be parallel
- Not supported:
ALTER
andSELECT...SAMPLE
operations.- Indexes.
- Replication.
Globs in path
Multiple path components can have globs. For being processed file should exists and matches to the whole path pattern. Listing of files determines during SELECT
(not at CREATE
moment).
*
— Substitutes any number of any characters except/
including empty string.?
— Substitutes any single character.{some_string,another_string,yet_another_one}
— Substitutes any of strings'some_string', 'another_string', 'yet_another_one'
.{N..M}
— Substitutes any number in range from N to M including both borders.
Constructions with {}
are similar to the remote table function.
Example
- Suppose we have several files in TSV format with the following URIs on HDFS:
- ‘hdfs://hdfs1:9000/some_dir/some_file_1’
- ‘hdfs://hdfs1:9000/some_dir/some_file_2’
- ‘hdfs://hdfs1:9000/some_dir/some_file_3’
- ‘hdfs://hdfs1:9000/another_dir/some_file_1’
- ‘hdfs://hdfs1:9000/another_dir/some_file_2’
- ‘hdfs://hdfs1:9000/another_dir/some_file_3’
- There are several ways to make a table consisting of all six files:
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV')
Another way:
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_?', 'TSV')
Table consists of all the files in both directories (all files should satisfy format and schema described in query):
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV')
Warning
If the listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use ?
.
Example
Create table with files named file000
, file001
, … , file999
:
CREATE TABLE big_table (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV')
Configuration
Similar to GraphiteMergeTree, the HDFS engine supports extended configuration using the ClickHouse config file. There are two configuration keys that you can use: global (hdfs
) and user-level (hdfs_*
). The global configuration is applied first, and then the user-level configuration is applied (if it exists).
<!-- Global configuration options for HDFS engine type -->
<hdfs>
<hadoop_kerberos_keytab>/tmp/keytab/clickhouse.keytab</hadoop_kerberos_keytab>
<hadoop_kerberos_principal>[email protected]</hadoop_kerberos_principal>
<hadoop_security_authentication>kerberos</hadoop_security_authentication>
</hdfs>
<!-- Configuration specific for user "root" -->
<hdfs_root>
<hadoop_kerberos_principal>[email protected]</hadoop_kerberos_principal>
</hdfs_root>
List of possible configuration options with default values
Supported by libhdfs3
| parameter | default value |
| rpc_client_connect_tcpnodelay | true |
| dfs_client_read_shortcircuit | true |
| output_replace-datanode-on-failure | true |
| input_notretry-another-node | false |
| input_localread_mappedfile | true |
| dfs_client_use_legacy_blockreader_local | false |
| rpc_client_ping_interval | 10 * 1000 |
| rpc_client_connect_timeout | 600 * 1000 |
| rpc_client_read_timeout | 3600 * 1000 |
| rpc_client_write_timeout | 3600 * 1000 |
| rpc_client_socekt_linger_timeout | -1 |
| rpc_client_connect_retry | 10 |
| rpc_client_timeout | 3600 * 1000 |
| dfs_default_replica | 3 |
| input_connect_timeout | 600 * 1000 |
| input_read_timeout | 3600 * 1000 |
| input_write_timeout | 3600 * 1000 |
| input_localread_default_buffersize | 1 * 1024 * 1024 |
| dfs_prefetchsize | 10 |
| input_read_getblockinfo_retry | 3 |
| input_localread_blockinfo_cachesize | 1000 |
| input_read_max_retry | 60 |
| output_default_chunksize | 512 |
| output_default_packetsize | 64 * 1024 |
| output_default_write_retry | 10 |
| output_connect_timeout | 600 * 1000 |
| output_read_timeout | 3600 * 1000 |
| output_write_timeout | 3600 * 1000 |
| output_close_timeout | 3600 * 1000 |
| output_packetpool_size | 1024 |
| output_heeartbeat_interval | 10 * 1000 |
| dfs_client_failover_max_attempts | 15 |
| dfs_client_read_shortcircuit_streams_cache_size | 256 |
| dfs_client_socketcache_expiryMsec | 3000 |
| dfs_client_socketcache_capacity | 16 |
| dfs_default_blocksize | 64 * 1024 * 1024 |
| dfs_default_uri | “hdfs://localhost:9000” |
| hadoop_security_authentication | “simple” |
| hadoop_security_kerberos_ticket_cache_path | “” |
| dfs_client_log_severity | “INFO” |
| dfs_domain_socket_path | “” |
HDFS Configuration Reference might explain some parameters.
ClickHouse extras
| parameter | default value |
|hadoop_kerberos_keytab | “” |
|hadoop_kerberos_principal | “” |
|hadoop_kerberos_kinit_command | kinit |
Limitations
- hadoop_security_kerberos_ticket_cache_path can be global only, not user specific
Kerberos support
If hadoop_security_authentication parameter has value ‘kerberos’, ClickHouse authentifies via Kerberos facility.
Parameters here and hadoop_security_kerberos_ticket_cache_path may be of help.
Note that due to libhdfs3 limitations only old-fashioned approach is supported,
datanode communications are not secured by SASL (HADOOP_SECURE_DN_USER is a reliable indicator of such
security approach). Use tests/integration/test_storage_kerberized_hdfs/hdfs_configs/bootstrap.sh for reference.
If hadoop_kerberos_keytab, hadoop_kerberos_principal or hadoop_kerberos_kinit_command is specified, kinit will be invoked. hadoop_kerberos_keytab and hadoop_kerberos_principal are mandatory in this case. kinit tool and krb5 configuration files are required.
Virtual Columns
_path
— Path to the file._file
— Name of the file.
See Also