Overview of ClickHouse Architecture
ClickHouse is a true column-oriented DBMS. Data is stored by columns, and during the execution of arrays (vectors or chunks of columns). Whenever possible, operations are dispatched on arrays, rather than on individual values. This is called “vectorized query execution,” and it helps lower the cost of actual data processing.
This idea is nothing new. It dates back to the
APL
programming language and its descendants:A +
,J
,K
, andQ
. Array programming is used in scientific data processing. Neither is this idea something new in relational databases: for example, it is used in theVectorwise
system.
There are two different approaches for speeding up the query processing: vectorized query execution and runtime code generation. In the latter, the code is generated for every kind of query on the fly, removing all indirection and dynamic dispatch. Neither of these approaches is strictly better than the other. Runtime code generation can be better when it fuses many operations together, thus fully utilizing CPU execution units and the pipeline. Vectorized query execution can be less practical, because it involves temporary vectors that must be written to the cache and read back. If the temporary data does not fit in the L2 cache, this becomes an issue. But vectorized query execution more easily utilizes the SIMD capabilities of the CPU. A research paper written by our friends shows that it is better to combine both approaches. ClickHouse uses vectorized query execution and has limited initial support for runtime code generation.
Columns
To represent columns in memory (actually, chunks of columns), the IColumn
interface is used. This interface provides helper methods for implementation of various relational operators. Almost all operations are immutable: they do not modify the original column, but create a new modified one. For example, the IColumn :: filter
method accepts a filter byte mask. It is used for the WHERE
and HAVING
relational operators. Additional examples: the IColumn :: permute
method to support ORDER BY
, the IColumn :: cut
method to support LIMIT
, and so on.
Various IColumn
implementations (ColumnUInt8
, ColumnString
and so on) are responsible for the memory layout of columns. Memory layout is usually a contiguous array. For the integer type of columns it is just one contiguous array, like std :: vector
. For String
and Array
columns, it is two vectors: one for all array elements, placed contiguously, and a second one for offsets to the beginning of each array. There is also ColumnConst
that stores just one value in memory, but looks like a column.
Field
Nevertheless, it is possible to work with individual values as well. To represent an individual value, the Field
is used. Field
is just a discriminated union of UInt64
, Int64
, Float64
, String
and Array
. IColumn
has the operator[]
method to get the n-th value as a Field
, and the insert
method to append a Field
to the end of a column. These methods are not very efficient, because they require dealing with temporary Field
objects representing an individual value. There are more efficient methods, such as insertFrom
, insertRangeFrom
, and so on.
Field
doesn’t have enough information about a specific data type for a table. For example, UInt8
, UInt16
, UInt32
, and UInt64
are all represented as UInt64
in a Field
.
Leaky Abstractions
IColumn
has methods for common relational transformations of data, but they don’t meet all needs. For example, ColumnUInt64
doesn’t have a method to calculate the sum of two columns, and ColumnString
doesn’t have a method to run a substring search. These countless routines are implemented outside of IColumn
.
Various functions on columns can be implemented in a generic, non-efficient way using IColumn
methods to extract Field
values, or in a specialized way using knowledge of inner memory layout of data in a specific IColumn
implementation. To do this, functions are cast to a specific IColumn
type and deal with internal representation directly. For example, ColumnUInt64
has the getData
method that returns a reference to an internal array, then a separate routine reads or fills that array directly. In fact, we have “leaky abstractions” to allow efficient specializations of various routines.
Data Types
IDataType
is responsible for serialization and deserialization: for reading and writing chunks of columns or individual values in binary or text form.IDataType
directly corresponds to data types in tables. For example, there are DataTypeUInt32
, DataTypeDateTime
, DataTypeString
and so on.
IDataType
and IColumn
are only loosely related to each other. Different data types can be represented in memory by the same IColumn
implementations. For example, DataTypeUInt32
and DataTypeDateTime
are both represented by ColumnUInt32
or ColumnConstUInt32
. In addition, the same data type can be represented by different IColumn
implementations. For example, DataTypeUInt8
can be represented by ColumnUInt8
or ColumnConstUInt8
.
IDataType
only stores metadata. For instance, DataTypeUInt8
doesn’t store anything at all (except vptr) and DataTypeFixedString
stores just N
(the size of fixed-size strings).
IDataType
has helper methods for various data formats. Examples are methods to serialize a value with possible quoting, to serialize a value for JSON, and to serialize a value as part of XML format. There is no direct correspondence to data formats. For example, the different data formats Pretty
and TabSeparated
can use the same serializeTextEscaped
helper method from the IDataType
interface.
Block
A Block
is a container that represents a subset (chunk) of a table in memory. It is just a set of triples: (IColumn, IDataType, column name)
. During query execution, data is processed by Block
s. If we have a Block
, we have data (in the IColumn
object), we have information about its type (in IDataType
) that tells us how to deal with that column, and we have the column name (either the original column name from the table, or some artificial name assigned for getting temporary results of calculations).
When we calculate some function over columns in a block, we add another column with its result to the block, and we don’t touch columns for arguments of the function because operations are immutable. Later, unneeded columns can be removed from the block, but not modified. This is convenient for elimination of common subexpressions.
Blocks are created for every processed chunk of data. Note that for the same type of calculation, the column names and types remain the same for different blocks, and only column data changes. It is better to split block data from the block header, because small block sizes will have a high overhead of temporary strings for copying shared_ptrs and column names.
Block Streams
Block streams are for processing data. We use streams of blocks to read data from somewhere, perform data transformations, or write data to somewhere. IBlockInputStream
has the read
method to fetch the next block while available. IBlockOutputStream
has the write
method to push the block somewhere.
Streams are responsible for:
- Reading or writing to a table. The table just returns a stream for reading or writing blocks.
- Implementing data formats. For example, if you want to output data to a terminal in
Pretty
format, you create a block output stream where you push blocks, and it formats them. - Performing data transformations. Let’s say you have
IBlockInputStream
and want to create a filtered stream. You createFilterBlockInputStream
and initialize it with your stream. Then when you pull a block fromFilterBlockInputStream
, it pulls a block from your stream, filters it, and returns the filtered block to you. Query execution pipelines are represented this way.
There are more sophisticated transformations. For example, when you pull from AggregatingBlockInputStream
, it reads all data from its source, aggregates it, and then returns a stream of aggregated data for you. Another example: UnionBlockInputStream
accepts many input sources in the constructor and also a number of threads. It launches multiple threads and reads from multiple sources in parallel.
Block streams use the “pull” approach to control flow: when you pull a block from the first stream, it consequently pulls the required blocks from nested streams, and the entire execution pipeline will work. Neither “pull” nor “push” is the best solution, because control flow is implicit, and that limits implementation of various features like simultaneous execution of multiple queries (merging many pipelines together). This limitation could be overcome with coroutines or just running extra threads that wait for each other. We may have more possibilities if we make control flow explicit: if we locate the logic for passing data from one calculation unit to another outside of those calculation units. Read this article for more thoughts.
We should note that the query execution pipeline creates temporary data at each step. We try to keep block size small enough so that temporary data fits in the CPU cache. With that assumption, writing and reading temporary data is almost free in comparison with other calculations. We could consider an alternative, which is to fuse many operations in the pipeline together, to make the pipeline as short as possible and remove much of the temporary data. This could be an advantage, but it also has drawbacks. For example, a split pipeline makes it easy to implement caching intermediate data, stealing intermediate data from similar queries running at the same time, and merging pipelines for similar queries.
Formats
Data formats are implemented with block streams. There are “presentational” formats only suitable for output of data to the client, such as Pretty
format, which provides only IBlockOutputStream
. And there are input/output formats, such as TabSeparated
or JSONEachRow
.
There are also row streams: IRowInputStream
and IRowOutputStream
. They allow you to pull/push data by individual rows, not by blocks. And they are only needed to simplify implementation of row-oriented formats. The wrappers BlockInputStreamFromRowInputStream
and BlockOutputStreamFromRowOutputStream
allow you to convert row-oriented streams to regular block-oriented streams.
I/O
For byte-oriented input/output, there are ReadBuffer
and WriteBuffer
abstract classes. They are used instead of C++ iostream
s. Don’t worry: every mature C++ project is using something other than iostream
s for good reasons.
ReadBuffer
and WriteBuffer
are just a contiguous buffer and a cursor pointing to the position in that buffer. Implementations may own or not own the memory for the buffer. There is a virtual method to fill the buffer with the following data (for ReadBuffer
) or to flush the buffer somewhere (for WriteBuffer
). The virtual methods are rarely called.
Implementations of ReadBuffer
/WriteBuffer
are used for working with files and file descriptors and network sockets, for implementing compression (CompressedWriteBuffer
is initialized with another WriteBuffer and performs compression before writing data to it), and for other purposes – the names ConcatReadBuffer
, LimitReadBuffer
, and HashingWriteBuffer
speak for themselves.
Read/WriteBuffers only deal with bytes. To help with formatted input/output (for instance, to write a number in decimal format), there are functions from ReadHelpers
and WriteHelpers
header files.
Let’s look at what happens when you want to write a result set in JSON
format to stdout. You have a result set ready to be fetched from IBlockInputStream
. You create WriteBufferFromFileDescriptor(STDOUT_FILENO)
to write bytes to stdout. You create JSONRowOutputStream
, initialized with that WriteBuffer
, to write rows in JSON
to stdout. You create BlockOutputStreamFromRowOutputStream
on top of it, to represent it as IBlockOutputStream
. Then you call copyData
to transfer data from IBlockInputStream
to IBlockOutputStream
, and everything works. Internally, JSONRowOutputStream
will write various JSON delimiters and call the IDataType::serializeTextJSON
method with a reference to IColumn
and the row number as arguments. Consequently, IDataType::serializeTextJSON
will call a method from WriteHelpers.h
: for example, writeText
for numeric types and writeJSONString
for DataTypeString
.
Tables
Tables are represented by the IStorage
interface. Different implementations of that interface are different table engines. Examples are StorageMergeTree
, StorageMemory
, and so on. Instances of these classes are just tables.
The most important IStorage
methods are read
and write
. There are also alter
, rename
, drop
, and so on. The read
method accepts the following arguments: the set of columns to read from a table, the AST
query to consider, and the desired number of streams to return. It returns one or multiple IBlockInputStream
objects and information about the stage of data processing that was completed inside a table engine during query execution.
In most cases, the read method is only responsible for reading the specified columns from a table, not for any further data processing. All further data processing is done by the query interpreter and is outside the responsibility of IStorage
.
But there are notable exceptions:
- The AST query is passed to the
read
method and the table engine can use it to derive index usage and to read less data from a table. - Sometimes the table engine can process data itself to a specific stage. For example,
StorageDistributed
can send a query to remote servers, ask them to process data to a stage where data from different remote servers can be merged, and return that preprocessed data.
The query interpreter then finishes processing the data.
The table’s read
method can return multiple IBlockInputStream
objects to allow parallel data processing. These multiple block input streams can read from a table in parallel. Then you can wrap these streams with various transformations (such as expression evaluation or filtering) that can be calculated independently and create a UnionBlockInputStream
on top of them, to read from multiple streams in parallel.
There are also TableFunction
s. These are functions that return a temporary IStorage
object to use in the FROM
clause of a query.
To get a quick idea of how to implement your own table engine, look at something simple, like StorageMemory
or StorageTinyLog
.
As the result of the
read
method,IStorage
returnsQueryProcessingStage
– information about what parts of the query were already calculated inside storage. Currently we have only very coarse granularity for that information. There is no way for the storage to say “I have already processed this part of the expression in WHERE, for this range of data”. We need to work on that.
Parsers
A query is parsed by a hand-written recursive descent parser. For example, ParserSelectQuery
just recursively calls the underlying parsers for various parts of the query. Parsers create an AST
. The AST
is represented by nodes, which are instances of IAST
.
Parser generators are not used for historical reasons.
Interpreters
Interpreters are responsible for creating the query execution pipeline from an AST
. There are simple interpreters, such as InterpreterExistsQuery
and InterpreterDropQuery
, or the more sophisticated InterpreterSelectQuery
. The query execution pipeline is a combination of block input or output streams. For example, the result of interpreting the SELECT
query is the IBlockInputStream
to read the result set from; the result of the INSERT query is the IBlockOutputStream
to write data for insertion to; and the result of interpreting the INSERT SELECT
query is the IBlockInputStream
that returns an empty result set on the first read, but that copies data from SELECT
to INSERT
at the same time.
InterpreterSelectQuery
uses ExpressionAnalyzer
and ExpressionActions
machinery for query analysis and transformations. This is where most rule-based query optimizations are done. ExpressionAnalyzer
is quite messy and should be rewritten: various query transformations and optimizations should be extracted to separate classes to allow modular transformations or query.
Functions
There are ordinary functions and aggregate functions. For aggregate functions, see the next section.
Ordinary functions don’t change the number of rows – they work as if they are processing each row independently. In fact, functions are not called for individual rows, but for Block
‘s of data to implement vectorized query execution.
There are some miscellaneous functions, like blockSize, rowNumberInBlock, and runningAccumulate, that exploit block processing and violate the independence of rows.
ClickHouse has strong typing, so implicit type conversion doesn’t occur. If a function doesn’t support a specific combination of types, an exception will be thrown. But functions can work (be overloaded) for many different combinations of types. For example, the plus
function (to implement the +
operator) works for any combination of numeric types: UInt8
+ Float32
, UInt16
+ Int8
, and so on. Also, some variadic functions can accept any number of arguments, such as the concat
function.
Implementing a function may be slightly inconvenient because a function explicitly dispatches supported data types and supported IColumns
. For example, the plus
function has code generated by instantiation of a C++ template for each combination of numeric types, and for constant or non-constant left and right arguments.
This is a nice place to implement runtime code generation to avoid template code bloat. Also, it will make it possible to add fused functions like fused multiply-add, or to make multiple comparisons in one loop iteration.
Due to vectorized query execution, functions are not short-circuit. For example, if you write WHERE f(x) AND g(y)
, both sides will be calculated, even for rows, when f(x)
is zero (except when f(x)
is a zero constant expression). But if selectivity of the f(x)
condition is high, and calculation of f(x)
is much cheaper than g(y)
, it’s better to implement multi-pass calculation: first calculate f(x)
, then filter columns by the result, and then calculate g(y)
only for smaller, filtered chunks of data.
Aggregate Functions
Aggregate functions are stateful functions. They accumulate passed values into some state, and allow you to get results from that state. They are managed with the IAggregateFunction
interface. States can be rather simple (the state for AggregateFunctionCount
is just a single UInt64
value) or quite complex (the state of AggregateFunctionUniqCombined
is a combination of a linear array, a hash table and a HyperLogLog
probabilistic data structure).
To deal with multiple states while executing a high-cardinality GROUP BY
query, states are allocated in Arena
(a memory pool), or they could be allocated in any suitable piece of memory. States can have a non-trivial constructor and destructor: for example, complex aggregation states can allocate additional memory themselves. This requires some attention to creating and destroying states and properly passing their ownership, to keep track of who and when will destroy states.
Aggregation states can be serialized and deserialized to pass over the network during distributed query execution or to write them on disk where there is not enough RAM. They can even be stored in a table with the DataTypeAggregateFunction
to allow incremental aggregation of data.
The serialized data format for aggregate function states is not versioned right now. This is ok if aggregate states are only stored temporarily. But we have the
AggregatingMergeTree
table engine for incremental aggregation, and people are already using it in production. This is why we should add support for backward compatibility when changing the serialized format for any aggregate function in the future.
Server
The server implements several different interfaces:
- An HTTP interface for any foreign clients.
- A TCP interface for the native ClickHouse client and for cross-server communication during distributed query execution.
- An interface for transferring data for replication.
Internally, it is just a basic multithreaded server without coroutines, fibers, etc. Since the server is not designed to process a high rate of simple queries but is intended to process a relatively low rate of complex queries, each of them can process a vast amount of data for analytics.
The server initializes the Context
class with the necessary environment for query execution: the list of available databases, users and access rights, settings, clusters, the process list, the query log, and so on. This environment is used by interpreters.
We maintain full backward and forward compatibility for the server TCP protocol: old clients can talk to new servers and new clients can talk to old servers. But we don’t want to maintain it eternally, and we are removing support for old versions after about one year.
For all external applications, we recommend using the HTTP interface because it is simple and easy to use. The TCP protocol is more tightly linked to internal data structures: it uses an internal format for passing blocks of data and it uses custom framing for compressed data. We haven’t released a C library for that protocol because it requires linking most of the ClickHouse codebase, which is not practical.
Distributed Query Execution
Servers in a cluster setup are mostly independent. You can create a Distributed
table on one or all servers in a cluster. The Distributed
table does not store data itself – it only provides a “view” to all local tables on multiple nodes of a cluster. When you SELECT from a Distributed
table, it rewrites that query, chooses remote nodes according to load balancing settings, and sends the query to them. The Distributed
table requests remote servers to process a query just up to a stage where intermediate results from different servers can be merged. Then it receives the intermediate results and merges them. The distributed table tries to distribute as much work as possible to remote servers, and does not send much intermediate data over the network.
Things become more complicated when you have subqueries in IN or JOIN clauses and each of them uses a
Distributed
table. We have different strategies for execution of these queries.
There is no global query plan for distributed query execution. Each node has its own local query plan for its part of the job. We only have simple one-pass distributed query execution: we send queries for remote nodes and then merge the results. But this is not feasible for difficult queries with high cardinality GROUP BYs or with a large amount of temporary data for JOIN: in such cases, we need to “reshuffle” data between servers, which requires additional coordination. ClickHouse does not support that kind of query execution, and we need to work on it.
Merge Tree
MergeTree
is a family of storage engines that supports indexing by primary key. The primary key can be an arbitrary tuple of columns or expressions. Data in a MergeTree
table is stored in “parts”. Each part stores data in the primary key order (data is ordered lexicographically by the primary key tuple). All the table columns are stored in separate column.bin
files in these parts. The files consist of compressed blocks. Each block is usually from 64 KB to 1 MB of uncompressed data, depending on the average value size. The blocks consist of column values placed contiguously one after the other. Column values are in the same order for each column (the order is defined by the primary key), so when you iterate by many columns, you get values for the corresponding rows.
The primary key itself is “sparse”. It doesn’t address each single row, but only some ranges of data. A separate primary.idx
file has the value of the primary key for each N-th row, where N is called index_granularity
(usually, N = 8192). Also, for each column, we have column.mrk
files with “marks,” which are offsets to each N-th row in the data file. Each mark is a pair: the offset in the file to the beginning of the compressed block, and the offset in the decompressed block to the beginning of data. Usually compressed blocks are aligned by marks, and the offset in the decompressed block is zero. Data for primary.idx
always resides in memory and data for column.mrk
files is cached.
When we are going to read something from a part in MergeTree
, we look at primary.idx
data and locate ranges that could possibly contain requested data, then look at column.mrk
data and calculate offsets for where to start reading those ranges. Because of sparseness, excess data may be read. ClickHouse is not suitable for a high load of simple point queries, because the entire range with index_granularity
rows must be read for each key, and the entire compressed block must be decompressed for each column. We made the index sparse because we must be able to maintain trillions of rows per single server without noticeable memory consumption for the index. Also, because the primary key is sparse, it is not unique: it cannot check the existence of the key in the table at INSERT time. You could have many rows with the same key in a table.
When you INSERT
a bunch of data into MergeTree
, that bunch is sorted by primary key order and forms a new part. To keep the number of parts relatively low, there are background threads that periodically select some parts and merge them to a single sorted part. That’s why it is called MergeTree
. Of course, merging leads to “write amplification”. All parts are immutable: they are only created and deleted, but not modified. When SELECT is run, it holds a snapshot of the table (a set of parts). After merging, we also keep old parts for some time to make recovery after failure easier, so if we see that some merged part is probably broken, we can replace it with its source parts.
MergeTree
is not an LSM tree because it doesn’t contain “memtable” and “log”: inserted data is written directly to the filesystem. This makes it suitable only to INSERT data in batches, not by individual row and not very frequently – about once per second is ok, but a thousand times a second is not. We did it this way for simplicity’s sake, and because we are already inserting data in batches in our applications.
MergeTree tables can only have one (primary) index: there aren’t any secondary indices. It would be nice to allow multiple physical representations under one logical table, for example, to store data in more than one physical order or even to allow representations with pre-aggregated data along with original data.
There are MergeTree engines that are doing additional work during background merges. Examples are CollapsingMergeTree
and AggregatingMergeTree
. This could be treated as special support for updates. Keep in mind that these are not real updates because users usually have no control over the time when background merges will be executed, and data in a MergeTree
table is almost always stored in more than one part, not in completely merged form.
Replication
Replication in ClickHouse is implemented on a per-table basis. You could have some replicated and some non-replicated tables on the same server. You could also have tables replicated in different ways, such as one table with two-factor replication and another with three-factor.
Replication is implemented in the ReplicatedMergeTree
storage engine. The path in ZooKeeper
is specified as a parameter for the storage engine. All tables with the same path in ZooKeeper
become replicas of each other: they synchronize their data and maintain consistency. Replicas can be added and removed dynamically simply by creating or dropping a table.
Replication uses an asynchronous multi-master scheme. You can insert data into any replica that has a session with ZooKeeper
, and data is replicated to all other replicas asynchronously. Because ClickHouse doesn’t support UPDATEs, replication is conflict-free. As there is no quorum acknowledgment of inserts, just-inserted data might be lost if one node fails.
Metadata for replication is stored in ZooKeeper. There is a replication log that lists what actions to do. Actions are: get part; merge parts; drop partition, etc. Each replica copies the replication log to its queue and then executes the actions from the queue. For example, on insertion, the “get part” action is created in the log, and every replica downloads that part. Merges are coordinated between replicas to get byte-identical results. All parts are merged in the same way on all replicas. To achieve this, one replica is elected as the leader, and that replica initiates merges and writes “merge parts” actions to the log.
Replication is physical: only compressed parts are transferred between nodes, not queries. To lower the network cost (to avoid network amplification), merges are processed on each replica independently in most cases. Large merged parts are sent over the network only in cases of significant replication lag.
In addition, each replica stores its state in ZooKeeper as the set of parts and its checksums. When the state on the local filesystem diverges from the reference state in ZooKeeper, the replica restores its consistency by downloading missing and broken parts from other replicas. When there is some unexpected or broken data in the local filesystem, ClickHouse does not remove it, but moves it to a separate directory and forgets it.
The ClickHouse cluster consists of independent shards, and each shard consists of replicas. The cluster is not elastic, so after adding a new shard, data is not rebalanced between shards automatically. Instead, the cluster load will be uneven. This implementation gives you more control, and it is fine for relatively small clusters such as tens of nodes. But for clusters with hundreds of nodes that we are using in production, this approach becomes a significant drawback. We should implement a table engine that will span its data across the cluster with dynamically replicated regions that could be split and balanced between clusters automatically.