- Useful Diagnostic Queries
- Finding which shard contains data for a specific tenant
- Finding the distribution column for a table
- Detecting locks
- Querying the size of your shards
- Querying the size of all distributed tables
- Determining Replication Factor per Table
- Identifying unused indices
- Monitoring client connection count
- Viewing system queries
- Index hit rate
- Cache hit rate
Useful Diagnostic Queries
Finding which shard contains data for a specific tenant
The rows of a distributed table are grouped into shards, and each shard is placed on a worker node in the Citus cluster. In the multi-tenant Citus use case we can determine which worker node contains the rows for a specific tenant by putting together two pieces of information: the shard id associated with the tenant id, and the shard placements on workers. The two can be retrieved together in a single query. Suppose our multi-tenant application’s tenants and are stores, and we want to find which worker node holds the data for Gap.com (id=4, suppose).
To find the worker node holding the data for store id=4, ask for the placement of rows whose distribution column has value 4:
SELECT shardid, shardstate, shardlength, nodename, nodeport, placementid
FROM pg_dist_placement AS placement,
pg_dist_node AS node
WHERE placement.groupid = node.groupid
AND node.noderole = 'primary'
AND shardid = (
SELECT get_shard_id_for_distribution_column('stores', 4)
);
The output contains the host and port of the worker database.
┌─────────┬────────────┬─────────────┬───────────┬──────────┬─────────────┐
│ shardid │ shardstate │ shardlength │ nodename │ nodeport │ placementid │
├─────────┼────────────┼─────────────┼───────────┼──────────┼─────────────┤
│ 102009 │ 1 │ 0 │ localhost │ 5433 │ 2 │
└─────────┴────────────┴─────────────┴───────────┴──────────┴─────────────┘
Finding the distribution column for a table
Each distributed table in Citus has a “distribution column.” For more information about what this is and how it works, see Distributed Data Modeling. There are many situations where it is important to know which column it is. Some operations require joining or filtering on the distribution column, and you may encounter error messages with hints like, “add a filter to the distribution column.”
The pg_dist_*
tables on the coordinator node contain diverse metadata about the distributed database. In particular pg_dist_partition
holds information about the distribution column (formerly called partition column) for each table. You can use a convenient utility function to look up the distribution column name from the low-level details in the metadata. Here’s an example and its output:
-- create example table
CREATE TABLE products (
store_id bigint,
product_id bigint,
name text,
price money,
CONSTRAINT products_pkey PRIMARY KEY (store_id, product_id)
);
-- pick store_id as distribution column
SELECT create_distributed_table('products', 'store_id');
-- get distribution column name for products table
SELECT column_to_column_name(logicalrelid, partkey) AS dist_col_name
FROM pg_dist_partition
WHERE logicalrelid='products'::regclass;
Example output:
┌───────────────┐
│ dist_col_name │
├───────────────┤
│ store_id │
└───────────────┘
Detecting locks
This query will run across all worker nodes and identify locks, how long they’ve been open, and the offending queries:
SELECT run_command_on_workers($cmd$
SELECT array_agg(
blocked_statement || ' $ ' || cur_stmt_blocking_proc
|| ' $ ' || cnt::text || ' $ ' || age
)
FROM (
SELECT blocked_activity.query AS blocked_statement,
blocking_activity.query AS cur_stmt_blocking_proc,
count(*) AS cnt,
age(now(), min(blocked_activity.query_start)) AS "age"
FROM pg_catalog.pg_locks blocked_locks
JOIN pg_catalog.pg_stat_activity blocked_activity
ON blocked_activity.pid = blocked_locks.pid
JOIN pg_catalog.pg_locks blocking_locks
ON blocking_locks.locktype = blocked_locks.locktype
AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
AND blocking_locks.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid
AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
AND blocking_locks.pid != blocked_locks.pid
JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid = blocking_locks.pid
WHERE NOT blocked_locks.GRANTED
AND blocking_locks.GRANTED
GROUP BY blocked_activity.query,
blocking_activity.query
ORDER BY 4
) a
$cmd$);
Example output:
┌───────────────────────────────────────────────────────────────────────────────────┐
│ run_command_on_workers │
├───────────────────────────────────────────────────────────────────────────────────┤
│ (localhost,5433,t,"") │
│ (localhost,5434,t,"{""update ads_102277 set name = 'new name' where id = 1; $ sel…│
│…ect * from ads_102277 where id = 1 for update; $ 1 $ 00:00:03.729519""}") │
└───────────────────────────────────────────────────────────────────────────────────┘
Querying the size of your shards
This query will provide you with the size of every shard of a given distributed table, designated here with the placeholder my_table
:
SELECT shardid, table_name, shard_size
FROM citus_shards
WHERE table_name = 'my_table';
Example output:
.
shardid | table_name | shard_size
---------+------------+------------
102170 | my_table | 90177536
102171 | my_table | 90177536
102172 | my_table | 91226112
102173 | my_table | 90177536
This query uses the Shard information view.
Querying the size of all distributed tables
This query gets a list of the sizes for each distributed table plus the size of their indices.
SELECT table_name, table_size
FROM citus_tables;
Example output:
┌───────────────┬────────────┐
│ table_name │ table_size │
├───────────────┼────────────┤
│ github_users │ 39 MB │
│ github_events │ 98 MB │
└───────────────┴────────────┘
There are other ways to measure distributed table size, as well. See Determining Table and Relation Size.
Determining Replication Factor per Table
When using Citus replication rather than PostgreSQL streaming replication, each table can have a customized “replication factor.” This controls the number of redundant copies Citus keeps of each of the table’s shards. (See Worker Node Failures.)
To see an overview of this setting for all tables, run:
SELECT logicalrelid AS tablename,
count(*)/count(DISTINCT ps.shardid) AS replication_factor
FROM pg_dist_shard_placement ps
JOIN pg_dist_shard p ON ps.shardid=p.shardid
GROUP BY logicalrelid;
Example output:
┌───────────────┬────────────────────┐
│ tablename │ replication_factor │
├───────────────┼────────────────────┤
│ github_events │ 1 │
│ github_users │ 1 │
└───────────────┴────────────────────┘
Identifying unused indices
This query will run across all worker nodes and identify any unused indexes for a given distributed table, designated here with the placeholder my_distributed_table
:
SELECT *
FROM run_command_on_shards('my_distributed_table', $cmd$
SELECT array_agg(a) as infos
FROM (
SELECT (
schemaname || '.' || relname || '##' || indexrelname || '##'
|| pg_size_pretty(pg_relation_size(i.indexrelid))::text
|| '##' || idx_scan::text
) AS a
FROM pg_stat_user_indexes ui
JOIN pg_index i
ON ui.indexrelid = i.indexrelid
WHERE NOT indisunique
AND idx_scan < 50
AND pg_relation_size(relid) > 5 * 8192
AND (schemaname || '.' || relname)::regclass = '%s'::regclass
ORDER BY
pg_relation_size(i.indexrelid) / NULLIF(idx_scan, 0) DESC nulls first,
pg_relation_size(i.indexrelid) DESC
) sub
$cmd$);
Example output:
┌─────────┬─────────┬───────────────────────────────────────────────────────────────────────┐
│ shardid │ success │ result │
├─────────┼─────────┼───────────────────────────────────────────────────────────────────────┤
│ 102008 │ t │ │
│ 102009 │ t │ {"public.my_distributed_table_102009##stupid_index_102009##28 MB##0"} │
│ 102010 │ t │ │
│ 102011 │ t │ │
└─────────┴─────────┴───────────────────────────────────────────────────────────────────────┘
Monitoring client connection count
This query will give you the connection count by each type that are open on the coordinator:
SELECT state, count(*)
FROM pg_stat_activity
GROUP BY state;
Exxample output:
┌────────┬───────┐
│ state │ count │
├────────┼───────┤
│ active │ 3 │
│ ∅ │ 1 │
└────────┴───────┘
Viewing system queries
Active queries
The pg_stat_activity
view shows which queries are currently executing. You can filter to find the actively executing ones, along with the process ID of their backend:
SELECT pid, query, state
FROM pg_stat_activity
WHERE state != 'idle';
Why are queries waiting
We can also query to see the most common reasons that non-idle queries that are waiting. For an explanation of the reasons, check the PostgreSQL documentation.
SELECT wait_event || ':' || wait_event_type AS type, count(*) AS number_of_occurences
FROM pg_stat_activity
WHERE state != 'idle'
GROUP BY wait_event, wait_event_type
ORDER BY number_of_occurences DESC;
Example output when running pg_sleep
in a separate query concurrently:
┌─────────────────┬──────────────────────┐
│ type │ number_of_occurences │
├─────────────────┼──────────────────────┤
│ ∅ │ 1 │
│ PgSleep:Timeout │ 1 │
└─────────────────┴──────────────────────┘
Index hit rate
This query will provide you with your index hit rate across all nodes. Index hit rate is useful in determining how often indices are used when querying:
-- on coordinator
SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
FROM pg_statio_user_indexes;
-- on workers
SELECT nodename, result as index_hit_rate
FROM run_command_on_workers($cmd$
SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
FROM pg_statio_user_indexes;
$cmd$);
Example output:
┌───────────┬────────────────┐
│ nodename │ index_hit_rate │
├───────────┼────────────────┤
│ 10.0.0.16 │ 96.0 │
│ 10.0.0.20 │ 98.0 │
└───────────┴────────────────┘
Cache hit rate
Most applications typically access a small fraction of their total data at once. Postgres keeps frequently accessed data in memory to avoid slow reads from disk. You can see statistics about it in the pg_statio_user_tables view.
An important measurement is what percentage of data comes from the memory cache vs the disk in your workload:
-- on coordinator
SELECT
sum(heap_blks_read) AS heap_read,
sum(heap_blks_hit) AS heap_hit,
100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
FROM
pg_statio_user_tables;
-- on workers
SELECT nodename, result as cache_hit_rate
FROM run_command_on_workers($cmd$
SELECT
100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
FROM
pg_statio_user_tables;
$cmd$);
Example output:
┌───────────┬──────────┬─────────────────────┐
│ heap_read │ heap_hit │ cache_hit_rate │
├───────────┼──────────┼─────────────────────┤
│ 1 │ 132 │ 99.2481203007518796 │
└───────────┴──────────┴─────────────────────┘
If you find yourself with a ratio significantly lower than 99%, then you likely want to consider increasing the cache available to your database