AWS-CNI
This guide explains how to set up Cilium in combination with aws-cni. In this hybrid mode, the aws-cni plugin is responsible for setting up the virtual network devices as well as address allocation (IPAM) via ENI. After the initial networking is setup, the Cilium CNI plugin is called to attach eBPF programs to the network devices set up by aws-cni to enforce network policies, perform load-balancing, and encryption.
Note
Some advanced Cilium features may be limited when chaining with other CNI plugins, such as:
- Layer 7 Policy (see GitHub issue #12454)
- Transparent Encryption (stable/beta) (see Github issue #15596)
Important
Due to a bug in certain version of the AWS CNI, please ensure that you are running the AWS CNI 1.7.9 or newer to guarantee compatibility with Cilium.
Setup Cluster on AWS
Follow the instructions in the Installation on AWS EKS guide to set up an EKS cluster or use any other method of your preference to set up a Kubernetes cluster.
Ensure that the aws-vpc-cni-k8s plugin is installed. If you have set up an EKS cluster, this is automatically done.
Note
First, make sure you have Helm 3 installed. Helm 2 is no longer supported.
Setup Helm repository:
helm repo add cilium https://helm.cilium.io/
Deploy Cilium release via Helm:
helm install cilium cilium/cilium --version 1.9.8 \
--namespace kube-system \
--set cni.chainingMode=aws-cni \
--set masquerade=false \
--set tunnel=disabled \
--set nodeinit.enabled=true
This will enable chaining with the aws-cni plugin. It will also disable tunneling. Tunneling is not required as ENI IP addresses can be directly routed in your VPC. You can also disable masquerading for the same reason.
Restart existing pods
The new CNI chaining configuration will not apply to any pod that is already running in the cluster. Existing pods will be reachable and Cilium will load-balance to them but policy enforcement will not apply to them and load-balancing is not performed for traffic originating from existing pods. You must restart these pods in order to invoke the chaining configuration on them.
If you are unsure if a pod is managed by Cilium or not, run kubectl get cep
in the respective namespace and see if the pod is listed.
Validate the Installation
You can monitor as Cilium and all required components are being installed:
kubectl -n kube-system get pods --watch
NAME READY STATUS RESTARTS AGE
cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s
cilium-s8w5m 0/1 PodInitializing 0 7s
coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s
coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s
It may take a couple of minutes for all components to come up:
cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s
cilium-s8w5m 1/1 Running 0 4m12s
coredns-86c58d9df4-4g7dd 1/1 Running 0 13m
coredns-86c58d9df4-4l6b2 1/1 Running 0 13m
Deploy the connectivity test
You can deploy the “connectivity-check” to test connectivity between pods. It is recommended to create a separate namespace for this.
kubectl create ns cilium-test
Deploy the check with:
kubectl apply -n cilium-test -f https://raw.githubusercontent.com/cilium/cilium/v1.9/examples/kubernetes/connectivity-check/connectivity-check.yaml
It will deploy a series of deployments which will use various connectivity paths to connect to each other. Connectivity paths include with and without service load-balancing and various network policy combinations. The pod name indicates the connectivity variant and the readiness and liveness gate indicates success or failure of the test:
$ kubectl get pods -n cilium-test
NAME READY STATUS RESTARTS AGE
echo-a-76c5d9bd76-q8d99 1/1 Running 0 66s
echo-b-795c4b4f76-9wrrx 1/1 Running 0 66s
echo-b-host-6b7fc94b7c-xtsff 1/1 Running 0 66s
host-to-b-multi-node-clusterip-85476cd779-bpg4b 1/1 Running 0 66s
host-to-b-multi-node-headless-dc6c44cb5-8jdz8 1/1 Running 0 65s
pod-to-a-79546bc469-rl2qq 1/1 Running 0 66s
pod-to-a-allowed-cnp-58b7f7fb8f-lkq7p 1/1 Running 0 66s
pod-to-a-denied-cnp-6967cb6f7f-7h9fn 1/1 Running 0 66s
pod-to-b-intra-node-nodeport-9b487cf89-6ptrt 1/1 Running 0 65s
pod-to-b-multi-node-clusterip-7db5dfdcf7-jkjpw 1/1 Running 0 66s
pod-to-b-multi-node-headless-7d44b85d69-mtscc 1/1 Running 0 66s
pod-to-b-multi-node-nodeport-7ffc76db7c-rrw82 1/1 Running 0 65s
pod-to-external-1111-d56f47579-d79dz 1/1 Running 0 66s
pod-to-external-fqdn-allow-google-cnp-78986f4bcf-btjn7 1/1 Running 0 66s
Note
If you deploy the connectivity check to a single node cluster, pods that check multi-node functionalities will remain in the Pending
state. This is expected since these pods need at least 2 nodes to be scheduled successfully.
Specify Environment Variables
Specify the namespace in which Cilium is installed as CILIUM_NAMESPACE
environment variable. Subsequent commands reference this environment variable.
export CILIUM_NAMESPACE=kube-system
Enable Hubble for Cluster-Wide Visibility
Hubble is the component for observability in Cilium. To obtain cluster-wide visibility into your network traffic, deploy Hubble Relay and the UI as follows on your existing installation:
Installation via Helm
Installation via quick-hubble-install.yaml
If you installed Cilium via helm install
, you may enable Hubble Relay and UI with the following command:
helm upgrade cilium cilium/cilium --version 1.9.8 \
--namespace $CILIUM_NAMESPACE \
--reuse-values \
--set hubble.listenAddress=":4244" \
--set hubble.relay.enabled=true \
--set hubble.ui.enabled=true
On Cilium 1.9.1 and older, the Cilium agent pods will be restarted in the process.
If you installed Cilium 1.9.2 or newer via the provided quick-install.yaml
, you may deploy Hubble Relay and UI on top of your existing installation with the following command:
kubectl apply -f https://raw.githubusercontent.com/cilium/cilium/v1.9/install/kubernetes/quick-hubble-install.yaml
Installation via quick-hubble-install.yaml
only works if the installed Cilium version is 1.9.2 or newer. Users of Cilium 1.9.0 or 1.9.1 are encouraged to upgrade to a newer version by applying the most recent Cilium quick-install.yaml
first.
Alternatively, it is possible to manually generate a YAML manifest for the Cilium DaemonSet and Hubble Relay/UI as follows. The generated YAML can be applied on top of an existing installation:
# Set this to your installed Cilium version
export CILIUM_VERSION=1.9.1
# Please set any custom Helm values you may need for Cilium,
# such as for example `--set operator.replicas=1` on single-cluster nodes.
helm template cilium cilium/cilium --version $CILIUM_VERSION \\
--namespace $CILIUM_NAMESPACE \\
--set hubble.tls.auto.method="cronJob" \\
--set hubble.listenAddress=":4244" \\
--set hubble.relay.enabled=true \\
--set hubble.ui.enabled=true > cilium-with-hubble.yaml
# This will modify your existing Cilium DaemonSet and ConfigMap
kubectl apply -f cilium-with-hubble.yaml
The Cilium agent pods will be restarted in the process.
Once the Hubble UI pod is started, use port forwarding for the hubble-ui
service. This allows opening the UI locally on a browser:
kubectl port-forward -n $CILIUM_NAMESPACE svc/hubble-ui --address 0.0.0.0 --address :: 12000:80
And then open http://localhost:12000/ to access the UI.
Hubble UI is not the only way to get access to Hubble data. A command line tool, the Hubble CLI, is also available. It can be installed by following the instructions below:
Linux
MacOS
Windows
Download the latest hubble release:
export HUBBLE_VERSION=$(curl -s https://raw.githubusercontent.com/cilium/hubble/master/stable.txt)
curl -LO "https://github.com/cilium/hubble/releases/download/$HUBBLE_VERSION/hubble-linux-amd64.tar.gz"
curl -LO "https://github.com/cilium/hubble/releases/download/$HUBBLE_VERSION/hubble-linux-amd64.tar.gz.sha256sum"
sha256sum --check hubble-linux-amd64.tar.gz.sha256sum
tar zxf hubble-linux-amd64.tar.gz
and move the hubble
CLI to a directory listed in the $PATH
environment variable. For example:
sudo mv hubble /usr/local/bin
Download the latest hubble release:
export HUBBLE_VERSION=$(curl -s https://raw.githubusercontent.com/cilium/hubble/master/stable.txt)
curl -LO "https://github.com/cilium/hubble/releases/download/$HUBBLE_VERSION/hubble-darwin-amd64.tar.gz"
curl -LO "https://github.com/cilium/hubble/releases/download/$HUBBLE_VERSION/hubble-darwin-amd64.tar.gz.sha256sum"
shasum -a 256 -c hubble-darwin-amd64.tar.gz.sha256sum
tar zxf hubble-darwin-amd64.tar.gz
and move the hubble
CLI to a directory listed in the $PATH
environment variable. For example:
sudo mv hubble /usr/local/bin
Download the latest hubble release:
curl -LO "https://raw.githubusercontent.com/cilium/hubble/master/stable.txt"
set /p HUBBLE_VERSION=<stable.txt
curl -LO "https://github.com/cilium/hubble/releases/download/%HUBBLE_VERSION%/hubble-windows-amd64.tar.gz"
curl -LO "https://github.com/cilium/hubble/releases/download/%HUBBLE_VERSION%/hubble-windows-amd64.tar.gz.sha256sum"
certutil -hashfile hubble-windows-amd64.tar.gz SHA256
type hubble-windows-amd64.tar.gz.sha256sum
:: verify that the checksum from the two commands above match
tar zxf hubble-windows-amd64.tar.gz
and move the hubble.exe
CLI to a directory listed in the %PATH%
environment variable after extracting it from the tarball.
Similarly to the UI, use port forwarding for the hubble-relay
service to make it available locally:
kubectl port-forward -n $CILIUM_NAMESPACE svc/hubble-relay --address 0.0.0.0 --address :: 4245:80
In a separate terminal window, run the hubble status
command specifying the Hubble Relay address:
$ hubble --server localhost:4245 status
Healthcheck (via localhost:4245): Ok
Current/Max Flows: 5455/16384 (33.29%)
Flows/s: 11.30
Connected Nodes: 4/4
If Hubble Relay reports that all nodes are connected, as in the example output above, you can now use the CLI to observe flows of the entire cluster:
hubble --server localhost:4245 observe
If you encounter any problem at this point, you may seek help on Slack.
Tip
Hubble CLI configuration can be persisted using a configuration file or environment variables. This avoids having to specify options specific to a particular environment every time a command is run. Run hubble help config
for more information.
For more information about Hubble and its components, see the Observability section.