🦜⛓️ Langchain Retriever
TBD: describe what retrievers are in LC and how they work.
Vector Store Retriever
In the below example we demonstrate how to use Chroma as a vector store retriever with a filter query.
Note that the filter is supplied whenever we create the retriever object so the filter applies to all queries (get_relevant_documents
).
from langchain.document_loaders import OnlinePDFLoader
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.vectorstores import Chroma
from typing import Dict, Any
import chromadb
from langchain_core.embeddings import Embeddings
client = chromadb.PersistentClient(path="./chroma")
col = client.get_or_create_collection("test")
col.upsert([f"{i}" for i in range(10)],documents=[f"This is document #{i}" for i in range(10)],metadatas=[{"id":f"{i}"} for i in range(10)])
ef = chromadb.utils.embedding_functions.DefaultEmbeddingFunction()
class DefChromaEF(Embeddings):
def __init__(self,ef):
self.ef = ef
def embed_documents(self,texts):
return self.ef(texts)
def embed_query(self, query):
return self.ef([query])[0]
db = Chroma(client=client, collection_name="test",embedding_function=DefChromaEF(ef))
retriever = db.as_retriever(search_kwargs={"filter":{"id":"1"}})
docs = retriever.get_relevant_documents("document")
assert len(docs)==1
Ref: https://colab.research.google.com/drive/1L0RwQVVBtvTTd6Le523P4uzz3m3fm0pH#scrollTo=xROOfxLohE5j
November 30, 2023