- Testing - Integration Tests
- Teuthology consumes packages
- The Nightlies
- Testing Priority
- Suites Inventory
- teuthology-describe-tests
- How integration tests are run
- How integration tests are defined
- Reading a standalone test
- Test descriptions
- How tests are built from directories
- Filtering tests by their description
- Reducing the number of tests
Testing - Integration Tests
Ceph has two types of tests: make check tests and integration tests. When a test requires multiple machines, root access or lasts for a longer time (for example, to simulate a realistic Ceph deployment), it is deemed to be an integration test. Integration tests are organized into “suites”, which are defined in the ceph/qa sub-directory and run with the teuthology-suite
command.
The teuthology-suite
command is part of the teuthology framework. In the sections that follow we attempt to provide a detailed introduction to that framework from the perspective of a beginning Ceph developer.
Teuthology consumes packages
It may take some time to understand the significance of this fact, but it is very significant. It means that automated tests can be conducted on multiple platforms using the same packages (RPM, DEB) that can be installed on any machine running those platforms.
Teuthology has a list of platforms that it supports (as of September 2020 the list consisted of “RHEL/CentOS 8” and “Ubuntu 18.04”). It expects to be provided pre-built Ceph packages for these platforms. Teuthology deploys these platforms on machines (bare-metal or cloud-provisioned), installs the packages on them, and deploys Ceph clusters on them - all as called for by the test.
The Nightlies
A number of integration tests are run on a regular basis in the Sepia lab against the official Ceph repositories (on the master
development branch and the stable branches). Traditionally, these tests are called “the nightlies” because the Ceph core developers used to live and work in the same time zone and from their perspective the tests were run overnight.
The results of the nightlies are published at http://pulpito.ceph.com/. The developer nick shows in the test results URL and in the first column of the Pulpito dashboard. The results are also reported on the ceph-qa mailing list for analysis.
Testing Priority
The teuthology-suite
command includes an almost mandatory option -p <N>
which specifies the priority of the jobs submitted to the queue. The lower the value of N
, the higher the priority. The option is almost mandatory because the default is 1000
which matches the priority of the nightlies. Nightlies are often half-finished and cancelled due to the volume of testing done so your jobs may never finish. Therefore, it is common to select a priority less than 1000.
Job priority should be selected based on the following recommendations:
Priority < 10: Use this if the sky is falling and some group of tests must be run ASAP.
10 <= Priority < 50: Use this if your tests are urgent and blocking other important development.
50 <= Priority < 75: Use this if you are testing a particular feature/fix and running fewer than about 25 jobs. This range can also be used for urgent release testing.
75 <= Priority < 100: Tech Leads will regularly schedule integration tests with this priority to verify pull requests against master.
100 <= Priority < 150: This priority is to be used for QE validation of point releases.
150 <= Priority < 200: Use this priority for 100 jobs or fewer of a particular feature/fix that you’d like results on in a day or so.
200 <= Priority < 1000: Use this priority for large test runs that can be done over the course of a week.
In case you don’t know how many jobs would be triggered by teuthology-suite
command, use --dry-run
to get a count first and then issue teuthology-suite
command again, this time without --dry-run
and with -p
and an appropriate number as an argument to it.
To skip the priority check, use --force-priority
. In order to be sensitive to the runs of other developers who also need to do testing, please use it in emergency only.
Suites Inventory
The suites
directory of the ceph/qa sub-directory contains all the integration tests, for all the Ceph components.
install a Ceph cluster with ceph-deploy
(ceph-deploy man page)
get a machine, do nothing and return success (commonly used to verify the Testing - Integration Tests infrastructure works as expected)
test CephFS mounted using FUSE
test CephFS mounted using kernel
test the RBD kernel module
test CephFS with multiple MDSs
verify the Ceph cluster behaves when machines are powered off and on again
run Ceph clusters including OSDs and MONs, under various conditions of stress
run RBD tests using actual Ceph clusters, with and without qemu
run RGW tests using actual Ceph clusters
run tests that exercise the Ceph API with an actual Ceph cluster
verify that teuthology can run integration tests, with and without OpenStack
for various versions of Ceph, verify that upgrades can happen without disrupting an ongoing workload
teuthology-describe-tests
In February 2016, a new feature called teuthology-describe-tests
was added to the teuthology framework to facilitate documentation and better understanding of integration tests (feature announcement).
The upshot is that tests can be documented by embedding meta:
annotations in the yaml files used to define the tests. The results can be seen in the ceph-qa-suite wiki.
Since this is a new feature, many yaml files have yet to be annotated. Developers are encouraged to improve the documentation, in terms of both coverage and quality.
How integration tests are run
Given that - as a new Ceph developer - you will typically not have access to the Sepia lab, you may rightly ask how you can run the integration tests in your own environment.
One option is to set up a teuthology cluster on bare metal. Though this is a non-trivial task, it is possible. Here are some notes to get you started if you decide to go this route.
If you have access to an OpenStack tenant, you have another option: the teuthology framework has an OpenStack backend, which is documented here. This OpenStack backend can build packages from a given git commit or branch, provision VMs, install the packages and run integration tests on those VMs. This process is controlled using a tool called ceph-workbench ceph-qa-suite
. This tool also automates publishing of test results at http://teuthology-logs.public.ceph.com.
Running integration tests on your code contributions and publishing the results allows reviewers to verify that changes to the code base do not cause regressions, or to analyze test failures when they do occur.
Every teuthology cluster, whether bare-metal or cloud-provisioned, has a so-called “teuthology machine” from which tests suites are triggered using the teuthology-suite
command.
A detailed and up-to-date description of each teuthology-suite option is available by running the following command on the teuthology machine
teuthology-suite --help
How integration tests are defined
Integration tests are defined by yaml files found in the suites
subdirectory of the ceph/qa sub-directory and implemented by python code found in the tasks
subdirectory. Some tests (“standalone tests”) are defined in a single yaml file, while other tests are defined by a directory tree containing yaml files that are combined, at runtime, into a larger yaml file.
Reading a standalone test
Let us first examine a standalone test, or “singleton”.
Here is a commented example using the integration test rados/singleton/all/admin-socket.yaml
roles:
- - mon.a
- osd.0
- osd.1
tasks:
- install:
- ceph:
- admin_socket:
osd.0:
version:
git_version:
help:
config show:
config set filestore_dump_file /tmp/foo:
perf dump:
perf schema:
The roles
array determines the composition of the cluster (how many MONs, OSDs, etc.) on which this test is designed to run, as well as how these roles will be distributed over the machines in the testing cluster. In this case, there is only one element in the top-level array: therefore, only one machine is allocated to the test. The nested array declares that this machine shall run a MON with id a
(that is the mon.a
in the list of roles) and two OSDs (osd.0
and osd.1
).
The body of the test is in the tasks
array: each element is evaluated in order, causing the corresponding python file found in the tasks
subdirectory of the teuthology repository or ceph/qa sub-directory to be run. “Running” in this case means calling the task()
function defined in that file.
In this case, the install task comes first. It installs the Ceph packages on each machine (as defined by the roles
array). A full description of the install
task is found in the python file (search for “def task”).
The ceph
task, which is documented here (again, search for “def task”), starts OSDs and MONs (and possibly MDSs as well) as required by the roles
array. In this example, it will start one MON (mon.a
) and two OSDs (osd.0
and osd.1
), all on the same machine. Control moves to the next task when the Ceph cluster reaches HEALTH_OK
state.
The next task is admin_socket
(source code). The parameter of the admin_socket
task (and any other task) is a structure which is interpreted as documented in the task. In this example the parameter is a set of commands to be sent to the admin socket of osd.0
. The task verifies that each of them returns on success (i.e. exit code zero).
This test can be run with
teuthology-suite --machine-type smithi --suite rados/singleton/all/admin-socket.yaml fs/ext4.yaml
Test descriptions
Each test has a “test description”, which is similar to a directory path, but not the same. In the case of a standalone test, like the one in Reading a standalone test, the test description is identical to the relative path (starting from the suites/
directory of the ceph/qa sub-directory) of the yaml file defining the test.
Much more commonly, tests are defined not by a single yaml file, but by a directory tree of yaml files. At runtime, the tree is walked and all yaml files (facets) are combined into larger yaml “programs” that define the tests. A full listing of the yaml defining the test is included at the beginning of every test log.
In these cases, the description of each test consists of the subdirectory under suites/ containing the yaml facets, followed by an expression in curly braces ({}
) consisting of a list of yaml facets in order of concatenation. For instance the test description:
ceph-deploy/basic/{distros/centos_7.0.yaml tasks/ceph-deploy.yaml}
signifies the concatenation of two files:
ceph-deploy/basic/distros/centos_7.0.yaml
ceph-deploy/basic/tasks/ceph-deploy.yaml
How tests are built from directories
As noted in the previous section, most tests are not defined in a single yaml file, but rather as a combination of files collected from a directory tree within the suites/
subdirectory of the ceph/qa sub-directory.
The set of all tests defined by a given subdirectory of suites/
is called an “integration test suite”, or a “teuthology suite”.
Combination of yaml facets is controlled by special files (%
and +
) that are placed within the directory tree and can be thought of as operators. The %
file is the “convolution” operator and +
signifies concatenation.
Convolution operator
The convolution operator, implemented as an empty file called %
, tells teuthology to construct a test matrix from yaml facets found in subdirectories below the directory containing the operator.
For example, the ceph-deploy suite is defined by the suites/ceph-deploy/
tree, which consists of the files and subdirectories in the following structure
qa/suites/ceph-deploy
├── %
├── distros
│ ├── centos_latest.yaml
│ └── ubuntu_latest.yaml
└── tasks
├── ceph-admin-commands.yaml
└── rbd_import_export.yaml
This is interpreted as a 2x1 matrix consisting of two tests:
ceph-deploy/basic/{distros/centos_7.0.yaml tasks/ceph-deploy.yaml}
ceph-deploy/basic/{distros/ubuntu_16.04.yaml tasks/ceph-deploy.yaml}
i.e. the concatenation of centos_7.0.yaml and ceph-deploy.yaml and the concatenation of ubuntu_16.04.yaml and ceph-deploy.yaml, respectively. In human terms, this means that the task found in ceph-deploy.yaml
is intended to run on both CentOS 7.0 and Ubuntu 16.04.
Without the file percent, the ceph-deploy
tree would be interpreted as three standalone tests:
ceph-deploy/basic/distros/centos_7.0.yaml
ceph-deploy/basic/distros/ubuntu_16.04.yaml
ceph-deploy/basic/tasks/ceph-deploy.yaml
(which would of course be wrong in this case).
Referring to the ceph/qa sub-directory, you will notice that the centos_7.0.yaml
and ubuntu_16.04.yaml
files in the suites/ceph-deploy/basic/distros/
directory are implemented as symlinks. By using symlinks instead of copying, a single file can appear in multiple suites. This eases the maintenance of the test framework as a whole.
All the tests generated from the suites/ceph-deploy/
directory tree (also known as the “ceph-deploy suite”) can be run with
teuthology-suite --machine-type smithi --suite ceph-deploy
An individual test from the ceph-deploy suite can be run by adding the --filter
option
teuthology-suite \
--machine-type smithi \
--suite ceph-deploy/basic \
--filter 'ceph-deploy/basic/{distros/ubuntu_16.04.yaml tasks/ceph-deploy.yaml}'
Note
To run a standalone test like the one in Reading a standalone test, --suite
alone is sufficient. If you want to run a single test from a suite that is defined as a directory tree, --suite
must be combined with --filter
. This is because the --suite
option understands POSIX relative paths only.
Concatenation operator
For even greater flexibility in sharing yaml files between suites, the special file plus (+
) can be used to concatenate files within a directory. For instance, consider the suites/rbd/thrash tree
qa/suites/rbd/thrash
├── %
├── clusters
│ ├── +
│ ├── fixed-2.yaml
│ └── openstack.yaml
└── workloads
├── rbd_api_tests_copy_on_read.yaml
├── rbd_api_tests.yaml
└── rbd_fsx_rate_limit.yaml
This creates two tests:
rbd/thrash/{clusters/fixed-2.yaml clusters/openstack.yaml workloads/rbd_api_tests_copy_on_read.yaml}
rbd/thrash/{clusters/fixed-2.yaml clusters/openstack.yaml workloads/rbd_api_tests.yaml}
Because the clusters/
subdirectory contains the special file plus (+
), all the other files in that subdirectory (fixed-2.yaml
and openstack.yaml
in this case) are concatenated together and treated as a single file. Without the special file plus, they would have been convolved with the files from the workloads directory to create a 2x2 matrix:
rbd/thrash/{clusters/openstack.yaml workloads/rbd_api_tests_copy_on_read.yaml}
rbd/thrash/{clusters/openstack.yaml workloads/rbd_api_tests.yaml}
rbd/thrash/{clusters/fixed-2.yaml workloads/rbd_api_tests_copy_on_read.yaml}
rbd/thrash/{clusters/fixed-2.yaml workloads/rbd_api_tests.yaml}
The clusters/fixed-2.yaml
file is shared among many suites to define the following roles
roles:
- [mon.a, mon.c, osd.0, osd.1, osd.2, client.0]
- [mon.b, osd.3, osd.4, osd.5, client.1]
The rbd/thrash
suite as defined above, consisting of two tests, can be run with
teuthology-suite --machine-type smithi --suite rbd/thrash
A single test from the rbd/thrash suite can be run by adding the --filter
option
teuthology-suite \
--machine-type smithi \
--suite rbd/thrash \
--filter 'rbd/thrash/{clusters/fixed-2.yaml clusters/openstack.yaml workloads/rbd_api_tests_copy_on_read.yaml}'
Filtering tests by their description
When a few jobs fail and need to be run again, the --filter
option can be used to select tests with a matching description. For instance, if the rados
suite fails the all/peer.yaml test, the following will only run the tests that contain this file
teuthology-suite --machine-type smithi --suite rados --filter all/peer.yaml
The --filter-out
option does the opposite (it matches tests that do not contain a given string), and can be combined with the --filter
option.
Both --filter
and --filter-out
take a comma-separated list of strings (which means the comma character is implicitly forbidden in filenames found in the ceph/qa sub-directory). For instance
teuthology-suite --machine-type smithi --suite rados --filter all/peer.yaml,all/rest-api.yaml
will run tests that contain either all/peer.yaml or all/rest-api.yaml
Each string is looked up anywhere in the test description and has to be an exact match: they are not regular expressions.
Reducing the number of tests
The rados
suite generates tens or even hundreds of thousands of tests out of a few hundred files. This happens because teuthology constructs test matrices from subdirectories wherever it encounters a file named %
. For instance, all tests in the rados/basic suite run with different messenger types: simple
, async
and random
, because they are combined (via the special file %
) with the msgr directory
All integration tests are required to be run before a Ceph release is published. When merely verifying whether a contribution can be merged without risking a trivial regression, it is enough to run a subset. The --subset
option can be used to reduce the number of tests that are triggered. For instance
teuthology-suite --machine-type smithi --suite rados --subset 0/4000
will run as few tests as possible. The tradeoff in this case is that not all combinations of test variations will together, but no matter how small a ratio is provided in the --subset
, teuthology will still ensure that all files in the suite are in at least one test. Understanding the actual logic that drives this requires reading the teuthology source code.
The --limit
option only runs the first N
tests in the suite: this is rarely useful, however, because there is no way to control which test will be first.