- Working with Storage-attached indexing (SAI)
- Prerequisites
- Create SAI index
- Alter SAI index
- Drop SAI index
- Querying with SAI
Working with Storage-attached indexing (SAI)
Prerequisites
Create SAI index
To create an SAI index, you must define the index name, table name, and column name for the column to be indexed.
To create a simple SAI index:
CREATE CUSTOM INDEX lastname_sai_idx ON cycling.cyclist_semi_pro (lastname)
USING 'StorageAttachedIndex'
WITH OPTIONS = {'case_sensitive': 'false', 'normalize': 'true', 'ascii': 'true'};
CREATE CUSTOM INDEX age_sai_idx ON cycling.cyclist_semi_pro (age)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX country_sai_idx ON cycling.cyclist_semi_pro (country)
USING 'StorageAttachedIndex'
WITH OPTIONS = {'case_sensitive': 'false', 'normalize': 'true', 'ascii': 'true'};
CREATE CUSTOM INDEX registration_sai_idx ON cycling.cyclist_semi_pro (registration)
USING 'StorageAttachedIndex';
For most SAI indexes, the column name is defined in the CREATE CUSTOM INDEX
statement that also uses USING 'StorageAttachedIndex'
. The SAI index options are defined in the WITH OPTIONS
clause. The case_sensitive
option is set to false
to allow case-insensitive searches. The normalize
option is set to true
to allow searches to be normalized for Unicode characters. The ascii_only
option is set to true
to allow searches to be limited to ASCII characters.
The map
collection data type is the one exception, as shown in the example below.
Partition key SAI error
SAI indexes cannot be created on the partition key, as a primary index already exists and is used for queries. If you attempt to create an SAI on the partition key column, an error will be returned:
CQL
Result
CREATE CUSTOM INDEX ON demo2.person_id_name_primarykey (id)
USING 'StorageAttachedIndex';
InvalidRequest: Error from server: code=2200 [Invalid query] message="Cannot create secondary index on the only partition key column id"
map
collection in SAI index
Map collections do have a different format than other SAI indexes:
// Create an index on a map key to find all cyclist/team combos for a year
// tag::keysidx[]
CREATE INDEX IF NOT EXISTS team_year_keys_idx
ON cycling.cyclist_teams ( KEYS (teams) );
// end::keysidx[]
// Create an index on a map key to find all cyclist/team combos for a year
// tag::valuesidx[]
CREATE INDEX IF NOT EXISTS team_year_values_idx
ON cycling.cyclist_teams ( VALUES (teams) );
// end::valuesidx[]
// Create an index on a map key to find all cyclist/team combos for a year
// tag::entriesidx[]
CREATE INDEX IF NOT EXISTS team_year_entries_idx
ON cycling.cyclist_teams ( ENTRIES (teams) );
// end::entriesidx[]
similarity-function for vector search
This example uses the following table:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
To check if comment_vector
has a particular similarity function set, use the similarity-function
option set to one of the supported similarity functions: DOT_PRODUCT, COSINE, or EUCLIDEAN. The default similarity function is COSINE.
This index creates an index on the comment_vector
column with the similarity function set to DOT_PRODUCT:
CREATE CUSTOM INDEX sim_comments_idx
ON cycling.comments_vs (comment_vector)
USING 'StorageAttachedIndex'
WITH OPTIONS = { 'similarity_function': 'DOT_PRODUCT'};
Other resources
See CREATE CUSTOM INDEX for more information about creating SAI indexes.
Alter SAI index
SAI indexes cannot be altered. If you need to modify an SAI index, you will need to drop the current index, create a new index, and rebuild the cycling.
Drop index
DROP INDEX IF EXISTS cycling.lastname_sai_idx;
Create new index
CREATE CUSTOM INDEX lastname_sai_idx ON cycling.cyclist_semi_pro (lastname)
USING 'StorageAttachedIndex'
WITH OPTIONS = {'case_sensitive': 'false', 'normalize': 'true', 'ascii': 'true'};
CREATE CUSTOM INDEX age_sai_idx ON cycling.cyclist_semi_pro (age)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX country_sai_idx ON cycling.cyclist_semi_pro (country)
USING 'StorageAttachedIndex'
WITH OPTIONS = {'case_sensitive': 'false', 'normalize': 'true', 'ascii': 'true'};
CREATE CUSTOM INDEX registration_sai_idx ON cycling.cyclist_semi_pro (registration)
USING 'StorageAttachedIndex';
Drop SAI index
SAI indexes can be dropped (deleted).
To drop an SAI index:
DROP INDEX IF EXISTS cycling.lastname_sai_idx;
This command does not return a result.
Querying with SAI
The SAI quickstart focuses only on defining multiple indexes based on non-primary key columns (a very useful feature). Let’s explore other options using some examples of how you can run queries on tables that have differently defined SAI indexes.
Unresolved include directive in modules/cassandra/pages/developing/cql/indexing/sai/sai-query.adoc - include::developing:partial$sai/sai-only-select.adoc[]
Vector search
This example uses the following table and index:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX IF NOT EXISTS ann_index
ON cycling.comments_vs(comment_vector) USING 'StorageAttachedIndex';
Query vector data with CQL
To query data using Vector Search, use a SELECT
query:
CQL
Result
SELECT * FROM cycling.comments_vs
ORDER BY comment_vector ANN OF [0.15, 0.1, 0.1, 0.35, 0.55]
LIMIT 3;
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+----------------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-04-01 14:33:02.160000+0000 | LATE RIDERS SHOULD NOT DELAY THE START | [0.9, 0.54, 0.12, 0.1, 0.95] | Alex | 616e77e0-22a2-11ee-b99d-1f350647414a
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-02-17 08:43:20.234000+0000 | Glad you ran the race in the rain | [0.3, 0.34, 0.2, 0.78, 0.25] | Amy | 6170c1d0-22a2-11ee-b99d-1f350647414a
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-04-01 13:43:08.030000+0000 | Last climb was a killer | [0.3, 0.75, 0.2, 0.2, 0.5] | Amy | 62105d30-22a2-11ee-b99d-1f350647414a
The limit has to be 1,000 or fewer. |
Scrolling to the right on the results shows the comments from the table that most closely matched the embeddings used for the query.
Single index match on a column
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'StorageAttachedIndex';
The column commenter
is not the partition key in this table, so an index is required to query on it.
Query for a match on that column:
Query
Result
SELECT * FROM cycling.comments_vs
WHERE commenter = 'Alex';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+----------------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-04-01 14:33:02.160000+0000 | LATE RIDERS SHOULD NOT DELAY THE START | [0.9, 0.54, 0.12, 0.1, 0.95] | Alex | 6d0cdaa0-272b-11ee-859f-b9098002fcac
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
Failure with index
Note that a failure will occur if you try this query before creating the index:
Query
Result
SELECT * FROM cycling.comments_vs
WHERE commenter = 'Alex';
InvalidRequest: Error from server: code=2200
[Invalid query] message="Cannot execute this query as it might involve data filtering and thus may have unpredictable performance.
If you want to execute this query despite the performance unpredictability, use ALLOW FILTERING"
Single index match on a column with options
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX commenter_cs_idx ON cycling.comments_vs (commenter)
USING 'StorageAttachedIndex'
WITH OPTIONS = {'case_sensitive': 'true', 'normalize': 'true', 'ascii': 'true'};
Case-sensitivty
The column commenter
is not the partition key in this table, so an index is required to query on it. If we want to check commenter
as a case-sensitive value, we can use the case_sensitive
option set to true
.
Note that no results are returned if you use an inappropriately case-sensitive value in the query:
Query
Result
SELECT * FROM comments_vs WHERE commenter ='alex';
id | created_at | comment | comment_vector | commenter | record_id
----+------------+---------+----------------+-----------+-----------
(0 rows)
When we switch the case of the cyclist’s name to match the case in the index, the query succeeds:
Query
Result
SELECT comment,commenter FROM comments_vs WHERE commenter ='Alex';
comment | commenter
----------------------------------------+-----------
LATE RIDERS SHOULD NOT DELAY THE START | Alex
Second rest stop was out of water | Alex
(2 rows)
Index match on a composite partition key column
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.rank_by_year_and_name (
race_year int,
race_name text,
cyclist_name text,
rank int,
PRIMARY KEY ((race_year, race_name), rank)
);
CREATE CUSTOM INDEX race_name_idx
ON cycling.rank_by_year_and_name (race_name)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX race_year_idx
ON cycling.rank_by_year_and_name (race_year)
USING 'StorageAttachedIndex';
Composite partition keys have a partition defined by multiple columns in a table. Normally, you would need to specify all the columns in the partition key to query the table with a WHERE
clause. However, an SAI index makes it possible to define an index using a single column in the table’s composite partition key. You can create an SAI index on each column in the composite partition key, if you need to query based on just one column.
SAI indexes also allow you to query tables without using the inefficient ALLOW FILTERING
directive. The ALLOW FILTERING
directive requires scanning all the partitions in a table, leading to poor performance.
The race_year
and race_name
columns comprise the composite partition key for the cycling.rank_by_year_and_name
table.
Query for a match on the column race_name
:
Query
Result
SELECT * FROM cycling.rank_by_year_and_name
WHERE race_name = 'Tour of Japan - Stage 4 - Minami > Shinshu';
race_year | race_name | rank | cyclist_name
-----------+--------------------------------------------+------+----------------------
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Daniel MARTIN
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Benjamin PRADES
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Benjamin PRADES
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Adam PHELAN
2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Thomas LEBAS
Query for a match on the column race_year
:
Query
Result
SELECT * FROM cycling.rank_by_year_and_name
WHERE race_year = 2014;
race_year | race_name | rank | cyclist_name
-----------+--------------------------------------------+------+----------------------
2014 | 4th Tour of Beijing | 1 | Phillippe GILBERT
2014 | 4th Tour of Beijing | 2 | Daniel MARTIN
2014 | 4th Tour of Beijing | 3 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Daniel MARTIN
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Johan Esteban CHAVES
2014 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Benjamin PRADES
Multiple indexes matched with AND
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'StorageAttachedIndex';
Several indexes are created for the table to demonstrate how to query for matches on more than one column.
Query for matches on more than one column, and both columns must match:
Query
Result
SELECT * FROM cycling.comments_vs
WHERE
created_at='2017-03-21 21:11:09.999000+0000'
AND commenter = 'Alex';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
Multiple indexes matched with OR
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'StorageAttachedIndex';
Several indexes are created for the table to demonstrate how to query for matches on more than one column.
Query for a match on either one column or the other:
Query
Result
SELECT * FROM cycling.comments_vs
WHERE
created_at='2017-03-21 21:11:09.999000+0000'
OR created_at='2017-03-22 01:16:59.001000+0000';
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-03-22 01:16:59.001000+0000 | Great snacks at all reststops | [0.1, 0.4, 0.1, 0.52, 0.09] | Amy | 6d0fc0d0-272b-11ee-859f-b9098002fcac
Multiple indexes matched with IN
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
CREATE CUSTOM INDEX commenter_idx
ON cycling.comments_vs (commenter)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX created_at_idx
ON cycling.comments_vs (created_at)
USING 'StorageAttachedIndex';
CREATE CUSTOM INDEX ann_index
ON cycling.comments_vs (comment_vector)
USING 'StorageAttachedIndex';
Several indexes are created for the table to demonstrate how to query for matches on more than one column.
Query for match with column values in a list of values:
Query
Result
SELECT * FROM cycling.comments_vs
WHERE created_at IN
('2017-03-21 21:11:09.999000+0000'
,'2017-03-22 01:16:59.001000+0000');
id | created_at | comment | comment_vector | commenter | record_id
--------------------------------------+---------------------------------+-----------------------------------+------------------------------+-----------+--------------------------------------
e7ae5cf3-d358-4d99-b900-85902fda9bb0 | 2017-03-21 21:11:09.999000+0000 | Second rest stop was out of water | [0.99, 0.5, 0.99, 0.1, 0.34] | Alex | 6d0b7b10-272b-11ee-859f-b9098002fcac
c7fceba0-c141-4207-9494-a29f9809de6f | 2017-03-22 01:16:59.001000+0000 | Great snacks at all reststops | [0.1, 0.4, 0.1, 0.52, 0.09] | Amy | 6d0fc0d0-272b-11ee-859f-b9098002fcac
User-defined type
SAI can index either a user-defined type (UDT) or a list of UDTs. This example shows how to index a list of UDTs.
This example uses the following user-defined type (UDT), table and index:
CREATE TYPE IF NOT EXISTS cycling.race (
race_title text,
race_date timestamp,
race_time text
);
CREATE TABLE IF NOT EXISTS cycling.cyclist_races (
id UUID PRIMARY KEY,
lastname text,
firstname text,
races list<FROZEN <race>>
);
CREATE CUSTOM INDEX races_idx
ON cycling.cyclist_races (races)
USING 'StorageAttachedIndex';
An index is created on the list of UDTs column races
in the cycling.cyclist_races
table.
Query with CONTAINS
from the list races
column:
CQL
Result
SELECT * FROM cycling.cyclist_races
WHERE races CONTAINS {
race_title:'Rabobank 7-Dorpenomloop Aalburg',
race_date:'2015-05-09',
race_time:'02:58:33'};
id | firstname | lastname | races
--------------------------------------+-----------+----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS | [{race_title: 'Rabobank 7-Dorpenomloop Aalburg', race_date: '2015-05-09 00:00:00.000000+0000', race_time: '02:58:33'}, {race_title: 'Ronde van Gelderland', race_date: '2015-04-19 00:00:00.000000+0000', race_time: '03:22:23'}]
(1 rows)
SAI indexing with collections
SAI supports collections of type map
, list
, and set
. Collections allow you to group and store data together in a column.
In a relational database, a grouping such as a user’s multiple email addresses is achieved via many-to-one joined relationship between (for example) a user
table and an email
table. Apache Cassandra avoids joins between two tables by storing the user’s email addresses in a collection column in the user
table. Each collection specifies the data type of the data held.
A collection is appropriate if the data for collection storage is limited. If the data has unbounded growth potential, like messages sent or sensor events registered every second, do not use collections. Instead, use a table with a compound primary key where data is stored in the clustering columns.
In CQL queries of database tables with SAI indexes, the
|
Using the set type
This example uses the following table and index:
CREATE TABLE IF NOT EXISTS cycling.cyclist_career_teams (
id UUID PRIMARY KEY,
lastname text,
teams set<text>
);
CREATE CUSTOM INDEX teams_idx
ON cycling.cyclist_career_teams (teams)
USING 'StorageAttachedIndex';
An index is created on the set column teams
in the cyclist_career_teams
table.
Query with CONTAINS
from the set teams
column:
CQL
Result
SELECT * FROM cycling.cyclist_career_teams
WHERE teams CONTAINS 'Rabobank-Liv Giant';
id | lastname | teams
--------------------------------------+----------+------------------------------------------------------------------------------------------------------
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | VOS | {'Nederland bloeit', 'Rabobank Women Team', 'Rabobank-Liv Giant', 'Rabobank-Liv Woman Cycling Team'}
Using the list type
This example uses the following table and index:
CREATE TABLE IF NOT EXISTS cycling.upcoming_calendar (
year int,
month int,
events list<text>,
PRIMARY KEY (year, month)
);
CREATE CUSTOM INDEX events_idx
ON cycling.upcoming_calendar (events)
USING 'StorageAttachedIndex';
An index is created on the list column events
in the upcoming_calendar
table.
Query with CONTAINS
from the list events
column:
CQL
Result
SELECT * FROM cycling.upcoming_calendar
WHERE events CONTAINS 'Criterium du Dauphine';
year | month | events
------+-------+-----------------------------------------------
2015 | 6 | ['Criterium du Dauphine', 'Tour de Sui\nsse']
A slightly more complex query selects rows that either contain a particular event or have a particular month date:
CQL
Result
SELECT * FROM cycling.upcoming_calendar
WHERE events CONTAINS 'Criterium du Dauphine'
OR month = 7;
year | month | events
------+-------+-----------------------------------------------
2015 | 6 | ['Criterium du Dauphine', 'Tour de Sui\nsse']
2015 | 7 | ['Tour de France']
Using the map type
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.cyclist_teams (
id uuid PRIMARY KEY,
firstname text,
lastname text,
teams map<int, text>
);
CREATE INDEX IF NOT EXISTS team_year_keys_idx
ON cycling.cyclist_teams ( KEYS (teams) );
CREATE INDEX IF NOT EXISTS team_year_entries_idx
ON cycling.cyclist_teams ( ENTRIES (teams) );
CREATE INDEX IF NOT EXISTS team_year_values_idx
ON cycling.cyclist_teams ( VALUES (teams) );
Indexes created on the map column teams
in the cyclist_career_teams
table target the keys, values, and full entries of the column data.
Query with KEYS
from the map teams
column:
CQL
Result
SELECT * FROM cyclist_teams WHERE teams CONTAINS KEY 2014;
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS | {2014: 'Rabobank-Liv Woman Cycling Team', 2015: 'Rabobank-Liv Woman Cycling Team'}
Query a value from the map teams
column, noting that only the keyword CONTAINS
is included:
CQL
Result
SELECT * FROM cyclist_teams WHERE teams CONTAINS 'Team Garmin - Cervelo';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
Query entries from the map teams
column, noting the difference in the WHERE
clause:
CQL
Result
SELECT * FROM cyclist_teams
WHERE
teams[2014] = 'Boels:Dolmans Cycling Team'
AND teams[2015] = 'Boels:Dolmans Cycling Team';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
This example looks for a row where two entries are present in the map teams
column.
For more information, see: