Working with Vector Search
Create vector keyspace
Create the keyspace you want to use for your Vector Search table. This example uses cycling
as the keyspace name
:
CREATE KEYSPACE IF NOT EXISTS cycling
WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : '1' };
Use vector keyspace
Select the keyspace you want to use for your Vector Search table. This example uses cycling
as the keyspace name
:
USE cycling;
Create vector table
Create a new table in your keyspace, including the comments_vector
column for vector. The code below creates a vector with five values:
CREATE TABLE IF NOT EXISTS cycling.comments_vs (
record_id timeuuid,
id uuid,
commenter text,
comment text,
comment_vector VECTOR <FLOAT, 5>,
created_at timestamp,
PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);
Optionally, you can alter an existing table to add a vector column:
ALTER TABLE cycling.comments_vs
ADD comment_vector VECTOR <FLOAT, 5>(1)
Create vector index
Create the custom index with Storage Attached Indexing (SAI):
CREATE INDEX IF NOT EXISTS ann_index
ON cycling.comments_vs(comment_vector) USING 'sai';
For more about SAI, see the Storage Attached Indexing documentation.
The index can be created with options that define the similarity function:
Valid values for the |
Load vector data into your database
Insert data into the table using the new type:
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
e7ae5cf3-d358-4d99-b900-85902fda9bb0,
'2017-02-14 12:43:20-0800',
'Raining too hard should have postponed',
'Alex',
[0.45, 0.09, 0.01, 0.2, 0.11]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
e7ae5cf3-d358-4d99-b900-85902fda9bb0,
'2017-03-21 13:11:09.999-0800',
'Second rest stop was out of water',
'Alex',
[0.99, 0.5, 0.99, 0.1, 0.34]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
e7ae5cf3-d358-4d99-b900-85902fda9bb0,
'2017-04-01 06:33:02.16-0800',
'LATE RIDERS SHOULD NOT DELAY THE START',
'Alex',
[0.9, 0.54, 0.12, 0.1, 0.95]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
c7fceba0-c141-4207-9494-a29f9809de6f,
totimestamp(now()),
'The gift certificate for winning was the best',
'Amy',
[0.13, 0.8, 0.35, 0.17, 0.03]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
c7fceba0-c141-4207-9494-a29f9809de6f,
'2017-02-17 12:43:20.234+0400',
'Glad you ran the race in the rain',
'Amy',
[0.3, 0.34, 0.2, 0.78, 0.25]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
c7fceba0-c141-4207-9494-a29f9809de6f,
'2017-03-22 5:16:59.001+0400',
'Great snacks at all reststops',
'Amy',
[0.1, 0.4, 0.1, 0.52, 0.09]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
VALUES (
now(),
c7fceba0-c141-4207-9494-a29f9809de6f,
'2017-04-01 17:43:08.030+0400',
'Last climb was a killer',
'Amy',
[0.3, 0.75, 0.2, 0.2, 0.5]
);
Query vector data with CQL
To query data using Vector Search, use a SELECT
query:
SELECT * FROM cycling.comments_vs
ORDER BY comment_vector ANN OF [0.15, 0.1, 0.1, 0.35, 0.55]
LIMIT 3;
To obtain the similarity calculation of the best scoring node closest to the query data as part of the results, use a SELECT
query:
SELECT comment, similarity_cosine(comment_vector, [0.2, 0.15, 0.3, 0.2, 0.05])
FROM cycling.comments_vs
ORDER BY comment_vector ANN OF [0.1, 0.15, 0.3, 0.12, 0.05]
LIMIT 1;
The supported functions for this type of query are:
similarity_dot_product
similarity_cosine
similarity_euclidean
with the parameters of (<vector_column>, <embedding_value>). Both parameters represent vectors.
|