4.9 Quotas

Kafka cluster has the ability to enforce quotas on requests to control the broker resources used by clients. Two types of client quotas can be enforced by Kafka brokers for each group of clients sharing a quota:

  1. Network bandwidth quotas define byte-rate thresholds (since 0.9)
  2. Request rate quotas define CPU utilization thresholds as a percentage of network and I/O threads (since 0.11)

Why are quotas necessary?

It is possible for producers and consumers to produce/consume very high volumes of data or generate requests at a very high rate and thus monopolize broker resources, cause network saturation and generally DOS other clients and the brokers themselves. Having quotas protects against these issues and is all the more important in large multi-tenant clusters where a small set of badly behaved clients can degrade user experience for the well behaved ones. In fact, when running Kafka as a service this even makes it possible to enforce API limits according to an agreed upon contract.

Client groups

The identity of Kafka clients is the user principal which represents an authenticated user in a secure cluster. In a cluster that supports unauthenticated clients, user principal is a grouping of unauthenticated users chosen by the broker using a configurable PrincipalBuilder. Client-id is a logical grouping of clients with a meaningful name chosen by the client application. The tuple (user, client-id) defines a secure logical group of clients that share both user principal and client-id.

Quotas can be applied to (user, client-id), user or client-id groups. For a given connection, the most specific quota matching the connection is applied. All connections of a quota group share the quota configured for the group. For example, if (user=”test-user”, client-id=”test-client”) has a produce quota of 10MB/sec, this is shared across all producer instances of user “test-user” with the client-id “test-client”.

Quota Configuration

Quota configuration may be defined for (user, client-id), user and client-id groups. It is possible to override the default quota at any of the quota levels that needs a higher (or even lower) quota. The mechanism is similar to the per-topic log config overrides. User and (user, client-id) quota overrides are written to ZooKeeper under /config/users and client-id quota overrides are written under /config/clients. These overrides are read by all brokers and are effective immediately. This lets us change quotas without having to do a rolling restart of the entire cluster. See here for details. Default quotas for each group may also be updated dynamically using the same mechanism.

The order of precedence for quota configuration is:

  1. /config/users/<user>/clients/<client-id>
  2. /config/users/<user>/clients/<default>
  3. /config/users/<user>
  4. /config/users/<default>/clients/<client-id>
  5. /config/users/<default>/clients/<default>
  6. /config/users/<default>
  7. /config/clients/<client-id>
  8. /config/clients/<default>

Broker properties (quota.producer.default, quota.consumer.default) can also be used to set defaults of network bandwidth quotas for client-id groups. These properties are being deprecated and will be removed in a later release. Default quotas for client-id can be set in Zookeeper similar to the other quota overrides and defaults.

Network Bandwidth Quotas

Network bandwidth quotas are defined as the byte rate threshold for each group of clients sharing a quota. By default, each unique client group receives a fixed quota in bytes/sec as configured by the cluster. This quota is defined on a per-broker basis. Each group of clients can publish/fetch a maximum of X bytes/sec per broker before clients are throttled.

Request Rate Quotas

Request rate quotas are defined as the percentage of time a client can utilize on request handler I/O threads and network threads of each broker within a quota window. A quota of n% represents n% of one thread, so the quota is out of a total capacity of ((num.io.threads + num.network.threads) * 100)%. Each group of clients may use a total percentage of upto n% across all I/O and network threads in a quota window before being throttled. Since the number of threads allocated for I/O and network threads are typically based on the number of cores available on the broker host, request rate quotas represent the total percentage of CPU that may be used by each group of clients sharing the quota.

Enforcement

By default, each unique client group receives a fixed quota as configured by the cluster. This quota is defined on a per-broker basis. Each client can utilize this quota per broker before it gets throttled. We decided that defining these quotas per broker is much better than having a fixed cluster wide bandwidth per client because that would require a mechanism to share client quota usage among all the brokers. This can be harder to get right than the quota implementation itself!

How does a broker react when it detects a quota violation? In our solution, the broker first computes the amount of delay needed to bring the violating client under its quota and returns a response with the delay immediately. In case of a fetch request, the response will not contain any data. Then, the broker mutes the channel to the client, not to process requests from the client anymore, until the delay is over. Upon receiving a response with a non-zero delay duration, the Kafka client will also refrain from sending further requests to the broker during the delay. Therefore, requests from a throttled client are effectively blocked from both sides. Even with older client implementations that do not respect the delay response from the broker, the back pressure applied by the broker via muting its socket channel can still handle the throttling of badly behaving clients. Those clients who sent further requests to the throttled channel will receive responses only after the delay is over.

Byte-rate and thread utilization are measured over multiple small windows (e.g. 30 windows of 1 second each) in order to detect and correct quota violations quickly. Typically, having large measurement windows (for e.g. 10 windows of 30 seconds each) leads to large bursts of traffic followed by long delays which is not great in terms of user experience.