- A Demo using docker containers
- Prerequisites
- Setting up Docker Cluster
- Demo
- Step 1 : Publish the first batch to Kafka
- Step 2: Incrementally ingest data from Kafka topic
- Step 3: Sync with Hive
- Step 4 (a): Run Hive Queries
- Step 4 (b): Run Spark-SQL Queries
- Step 5: Upload second batch to Kafka and run DeltaStreamer to ingest
- Step 6(a): Run Hive Queries
- Step 6(b): Run Spark SQL Queries
- Step 7 : Incremental Query for COPY-ON-WRITE Table
- Step 8: Schedule and Run Compaction for Merge-On-Read dataset
- Step 9: Run Hive Queries including incremental queries
- Testing Hudi in Local Docker environment
A Demo using docker containers
Lets use a real world example to see how hudi works end to end. For this purpose, a self contained data infrastructure is brought up in a local docker cluster within your computer.
The steps have been tested on a Mac laptop
Prerequisites
- Docker Setup : For Mac, Please follow the steps as defined in [https://docs.docker.com/v17.12/docker-for-mac/install/]. For running Spark-SQL queries, please ensure atleast 6 GB and 4 CPUs are allocated to Docker (See Docker -> Preferences -> Advanced). Otherwise, spark-SQL queries could be killed because of memory issues.
- kafkacat : A command-line utility to publish/consume from kafka topics. Use
brew install kafkacat
to install kafkacat - /etc/hosts : The demo references many services running in container by the hostname. Add the following settings to /etc/hosts
127.0.0.1 adhoc-1
127.0.0.1 adhoc-2
127.0.0.1 namenode
127.0.0.1 datanode1
127.0.0.1 hiveserver
127.0.0.1 hivemetastore
127.0.0.1 kafkabroker
127.0.0.1 sparkmaster
127.0.0.1 zookeeper
Also, this has not been tested on some environments like Docker on Windows.
Setting up Docker Cluster
Build Hudi
The first step is to build hudi
cd <HUDI_WORKSPACE>
mvn package -DskipTests
Bringing up Demo Cluster
The next step is to run the docker compose script and setup configs for bringing up the cluster. This should pull the docker images from docker hub and setup docker cluster.
cd docker
./setup_demo.sh
....
....
....
Stopping spark-worker-1 ... done
Stopping hiveserver ... done
Stopping hivemetastore ... done
Stopping historyserver ... done
.......
......
Creating network "hudi_demo" with the default driver
Creating hive-metastore-postgresql ... done
Creating namenode ... done
Creating zookeeper ... done
Creating kafkabroker ... done
Creating hivemetastore ... done
Creating historyserver ... done
Creating hiveserver ... done
Creating datanode1 ... done
Creating sparkmaster ... done
Creating adhoc-1 ... done
Creating adhoc-2 ... done
Creating spark-worker-1 ... done
Copying spark default config and setting up configs
Copying spark default config and setting up configs
Copying spark default config and setting up configs
varadarb-C02SG7Q3G8WP:docker varadarb$ docker ps
At this point, the docker cluster will be up and running. The demo cluster brings up the following services
- HDFS Services (NameNode, DataNode)
- Spark Master and Worker
- Hive Services (Metastore, HiveServer2 along with PostgresDB)
- Kafka Broker and a Zookeeper Node (Kakfa will be used as upstream source for the demo)
- Adhoc containers to run Hudi/Hive CLI commands
Demo
Stock Tracker data will be used to showcase both different Hudi Views and the effects of Compaction.
Take a look at the directory docker/demo/data
. There are 2 batches of stock data - each at 1 minute granularity.
The first batch contains stocker tracker data for some stock symbols during the first hour of trading window
(9:30 a.m to 10:30 a.m). The second batch contains tracker data for next 30 mins (10:30 - 11 a.m). Hudi will
be used to ingest these batches to a dataset which will contain the latest stock tracker data at hour level granularity.
The batches are windowed intentionally so that the second batch contains updates to some of the rows in the first batch.
Step 1 : Publish the first batch to Kafka
Upload the first batch to Kafka topic ‘stock ticks’
cat docker/demo/data/batch_1.json | kafkacat -b kafkabroker -t stock_ticks -P
To check if the new topic shows up, use
kafkacat -b kafkabroker -L -J | jq .
{
"originating_broker": {
"id": 1001,
"name": "kafkabroker:9092/1001"
},
"query": {
"topic": "*"
},
"brokers": [
{
"id": 1001,
"name": "kafkabroker:9092"
}
],
"topics": [
{
"topic": "stock_ticks",
"partitions": [
{
"partition": 0,
"leader": 1001,
"replicas": [
{
"id": 1001
}
],
"isrs": [
{
"id": 1001
}
]
}
]
}
]
}
Step 2: Incrementally ingest data from Kafka topic
Hudi comes with a tool named DeltaStreamer. This tool can connect to variety of data sources (including Kafka) to pull changes and apply to Hudi dataset using upsert/insert primitives. Here, we will use the tool to download json data from kafka topic and ingest to both COW and MOR tables we initialized in the previous step. This tool automatically initializes the datasets in the file-system if they do not exist yet.
docker exec -it adhoc-2 /bin/bash
# Run the following spark-submit command to execute the delta-streamer and ingest to stock_ticks_cow dataset in HDFS
spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer $HUDI_UTILITIES_BUNDLE --storage-type COPY_ON_WRITE --source-class org.apache.hudi.utilities.sources.JsonKafkaSource --source-ordering-field ts --target-base-path /user/hive/warehouse/stock_ticks_cow --target-table stock_ticks_cow --props /var/demo/config/kafka-source.properties --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider
....
....
2018-09-24 22:20:00 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint:54 - OutputCommitCoordinator stopped!
2018-09-24 22:20:00 INFO SparkContext:54 - Successfully stopped SparkContext
# Run the following spark-submit command to execute the delta-streamer and ingest to stock_ticks_mor dataset in HDFS
spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer $HUDI_UTILITIES_BUNDLE --storage-type MERGE_ON_READ --source-class org.apache.hudi.utilities.sources.JsonKafkaSource --source-ordering-field ts --target-base-path /user/hive/warehouse/stock_ticks_mor --target-table stock_ticks_mor --props /var/demo/config/kafka-source.properties --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider --disable-compaction
....
2018-09-24 22:22:01 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint:54 - OutputCommitCoordinator stopped!
2018-09-24 22:22:01 INFO SparkContext:54 - Successfully stopped SparkContext
....
# As part of the setup (Look at setup_demo.sh), the configs needed for DeltaStreamer is uploaded to HDFS. The configs
# contain mostly Kafa connectivity settings, the avro-schema to be used for ingesting along with key and partitioning fields.
exit
You can use HDFS web-browser to look at the datasets
http://namenode:50070/explorer.html#/user/hive/warehouse/stock_ticks_cow
.
You can explore the new partition folder created in the dataset along with a “deltacommit” file under .hoodie which signals a successful commit.
There will be a similar setup when you browse the MOR dataset
http://namenode:50070/explorer.html#/user/hive/warehouse/stock_ticks_mor
Step 3: Sync with Hive
At this step, the datasets are available in HDFS. We need to sync with Hive to create new Hive tables and add partitions inorder to run Hive queries against those datasets.
docker exec -it adhoc-2 /bin/bash
# THis command takes in HIveServer URL and COW Hudi Dataset location in HDFS and sync the HDFS state to Hive
/var/hoodie/ws/hudi-hive/run_sync_tool.sh --jdbc-url jdbc:hive2://hiveserver:10000 --user hive --pass hive --partitioned-by dt --base-path /user/hive/warehouse/stock_ticks_cow --database default --table stock_ticks_cow
.....
2018-09-24 22:22:45,568 INFO [main] hive.HiveSyncTool (HiveSyncTool.java:syncHoodieTable(112)) - Sync complete for stock_ticks_cow
.....
# Now run hive-sync for the second data-set in HDFS using Merge-On-Read (MOR storage)
/var/hoodie/ws/hudi-hive/run_sync_tool.sh --jdbc-url jdbc:hive2://hiveserver:10000 --user hive --pass hive --partitioned-by dt --base-path /user/hive/warehouse/stock_ticks_mor --database default --table stock_ticks_mor
...
2018-09-24 22:23:09,171 INFO [main] hive.HiveSyncTool (HiveSyncTool.java:syncHoodieTable(112)) - Sync complete for stock_ticks_mor
...
2018-09-24 22:23:09,559 INFO [main] hive.HiveSyncTool (HiveSyncTool.java:syncHoodieTable(112)) - Sync complete for stock_ticks_mor_rt
....
exit
After executing the above command, you will notice
- A hive table named
stock_ticks_cow
created which provides Read-Optimized view for the Copy On Write dataset. - Two new tables
stock_ticks_mor
andstock_ticks_mor_rt
created for the Merge On Read dataset. The former provides the ReadOptimized view for the Hudi dataset and the later provides the realtime-view for the dataset.
Step 4 (a): Run Hive Queries
Run a hive query to find the latest timestamp ingested for stock symbol ‘GOOG’. You will notice that both read-optimized (for both COW and MOR dataset)and realtime views (for MOR dataset)give the same value “10:29 a.m” as Hudi create a parquet file for the first batch of data.
docker exec -it adhoc-2 /bin/bash
beeline -u jdbc:hive2://hiveserver:10000 --hiveconf hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat --hiveconf hive.stats.autogather=false
# List Tables
0: jdbc:hive2://hiveserver:10000> show tables;
+---------------------+--+
| tab_name |
+---------------------+--+
| stock_ticks_cow |
| stock_ticks_mor |
| stock_ticks_mor_rt |
+---------------------+--+
2 rows selected (0.801 seconds)
0: jdbc:hive2://hiveserver:10000>
# Look at partitions that were added
0: jdbc:hive2://hiveserver:10000> show partitions stock_ticks_mor_rt;
+----------------+--+
| partition |
+----------------+--+
| dt=2018-08-31 |
+----------------+--+
1 row selected (0.24 seconds)
# COPY-ON-WRITE Queries:
=========================
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_cow group by symbol HAVING symbol = 'GOOG';
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:29:00 |
+---------+----------------------+--+
Now, run a projection query:
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924221953 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924221953 | GOOG | 2018-08-31 10:29:00 | 3391 | 1230.1899 | 1230.085 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Merge-On-Read Queries:
==========================
Lets run similar queries against M-O-R dataset. Lets look at both
ReadOptimized and Realtime views supported by M-O-R dataset
# Run against ReadOptimized View. Notice that the latest timestamp is 10:29
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:29:00 |
+---------+----------------------+--+
1 row selected (6.326 seconds)
# Run against Realtime View. Notice that the latest timestamp is again 10:29
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:29:00 |
+---------+----------------------+--+
1 row selected (1.606 seconds)
# Run projection query against Read Optimized and Realtime tables
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924222155 | GOOG | 2018-08-31 10:29:00 | 3391 | 1230.1899 | 1230.085 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924222155 | GOOG | 2018-08-31 10:29:00 | 3391 | 1230.1899 | 1230.085 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
exit
exit
Step 4 (b): Run Spark-SQL Queries
Hudi support Spark as query processor just like Hive. Here are the same hive queries running in spark-sql
docker exec -it adhoc-1 /bin/bash
$SPARK_INSTALL/bin/spark-shell --jars $HUDI_SPARK_BUNDLE --master local[2] --driver-class-path $HADOOP_CONF_DIR --conf spark.sql.hive.convertMetastoreParquet=false --deploy-mode client --driver-memory 1G --executor-memory 3G --num-executors 1 --packages com.databricks:spark-avro_2.11:4.0.0
...
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.3.1
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
scala> spark.sql("show tables").show(100, false)
+--------+------------------+-----------+
|database|tableName |isTemporary|
+--------+------------------+-----------+
|default |stock_ticks_cow |false |
|default |stock_ticks_mor |false |
|default |stock_ticks_mor_rt|false |
+--------+------------------+-----------+
# Copy-On-Write Table
## Run max timestamp query against COW table
scala> spark.sql("select symbol, max(ts) from stock_ticks_cow group by symbol HAVING symbol = 'GOOG'").show(100, false)
[Stage 0:> (0 + 1) / 1]SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
+------+-------------------+
|symbol|max(ts) |
+------+-------------------+
|GOOG |2018-08-31 10:29:00|
+------+-------------------+
## Projection Query
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG'").show(100, false)
+-------------------+------+-------------------+------+---------+--------+
|_hoodie_commit_time|symbol|ts |volume|open |close |
+-------------------+------+-------------------+------+---------+--------+
|20180924221953 |GOOG |2018-08-31 09:59:00|6330 |1230.5 |1230.02 |
|20180924221953 |GOOG |2018-08-31 10:29:00|3391 |1230.1899|1230.085|
+-------------------+------+-------------------+------+---------+--------+
# Merge-On-Read Queries:
==========================
Lets run similar queries against M-O-R dataset. Lets look at both
ReadOptimized and Realtime views supported by M-O-R dataset
# Run against ReadOptimized View. Notice that the latest timestamp is 10:29
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG'").show(100, false)
+------+-------------------+
|symbol|max(ts) |
+------+-------------------+
|GOOG |2018-08-31 10:29:00|
+------+-------------------+
# Run against Realtime View. Notice that the latest timestamp is again 10:29
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG'").show(100, false)
+------+-------------------+
|symbol|max(ts) |
+------+-------------------+
|GOOG |2018-08-31 10:29:00|
+------+-------------------+
# Run projection query against Read Optimized and Realtime tables
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG'").show(100, false)
+-------------------+------+-------------------+------+---------+--------+
|_hoodie_commit_time|symbol|ts |volume|open |close |
+-------------------+------+-------------------+------+---------+--------+
|20180924222155 |GOOG |2018-08-31 09:59:00|6330 |1230.5 |1230.02 |
|20180924222155 |GOOG |2018-08-31 10:29:00|3391 |1230.1899|1230.085|
+-------------------+------+-------------------+------+---------+--------+
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG'").show(100, false)
+-------------------+------+-------------------+------+---------+--------+
|_hoodie_commit_time|symbol|ts |volume|open |close |
+-------------------+------+-------------------+------+---------+--------+
|20180924222155 |GOOG |2018-08-31 09:59:00|6330 |1230.5 |1230.02 |
|20180924222155 |GOOG |2018-08-31 10:29:00|3391 |1230.1899|1230.085|
+-------------------+------+-------------------+------+---------+--------+
Step 5: Upload second batch to Kafka and run DeltaStreamer to ingest
Upload the second batch of data and ingest this batch using delta-streamer. As this batch does not bring in any new partitions, there is no need to run hive-sync
cat docker/demo/data/batch_2.json | kafkacat -b kafkabroker -t stock_ticks -P
# Within Docker container, run the ingestion command
docker exec -it adhoc-2 /bin/bash
# Run the following spark-submit command to execute the delta-streamer and ingest to stock_ticks_cow dataset in HDFS
spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer $HUDI_UTILITIES_BUNDLE --storage-type COPY_ON_WRITE --source-class org.apache.hudi.utilities.sources.JsonKafkaSource --source-ordering-field ts --target-base-path /user/hive/warehouse/stock_ticks_cow --target-table stock_ticks_cow --props /var/demo/config/kafka-source.properties --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider
# Run the following spark-submit command to execute the delta-streamer and ingest to stock_ticks_mor dataset in HDFS
spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer $HUDI_UTILITIES_BUNDLE --storage-type MERGE_ON_READ --source-class org.apache.hudi.utilities.sources.JsonKafkaSource --source-ordering-field ts --target-base-path /user/hive/warehouse/stock_ticks_mor --target-table stock_ticks_mor --props /var/demo/config/kafka-source.properties --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider --disable-compaction
exit
With Copy-On-Write table, the second ingestion by DeltaStreamer resulted in a new version of Parquet file getting created.
See http://namenode:50070/explorer.html#/user/hive/warehouse/stock_ticks_cow/2018/08/31
With Merge-On-Read table, the second ingestion merely appended the batch to an unmerged delta (log) file.
Take a look at the HDFS filesystem to get an idea: http://namenode:50070/explorer.html#/user/hive/warehouse/stock_ticks_mor/2018/08/31
Step 6(a): Run Hive Queries
With Copy-On-Write table, the read-optimized view immediately sees the changes as part of second batch once the batch got committed as each ingestion creates newer versions of parquet files.
With Merge-On-Read table, the second ingestion merely appended the batch to an unmerged delta (log) file. This is the time, when ReadOptimized and Realtime views will provide different results. ReadOptimized view will still return “10:29 am” as it will only read from the Parquet file. Realtime View will do on-the-fly merge and return latest committed data which is “10:59 a.m”.
docker exec -it adhoc-2 /bin/bash
beeline -u jdbc:hive2://hiveserver:10000 --hiveconf hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat --hiveconf hive.stats.autogather=false
# Copy On Write Table:
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_cow group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
1 row selected (1.932 seconds)
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924221953 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924224524 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
As you can notice, the above queries now reflect the changes that came as part of ingesting second batch.
# Merge On Read Table:
# Read Optimized View
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:29:00 |
+---------+----------------------+--+
1 row selected (1.6 seconds)
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924222155 | GOOG | 2018-08-31 10:29:00 | 3391 | 1230.1899 | 1230.085 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Realtime View
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924224537 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
exit
exit
Step 6(b): Run Spark SQL Queries
Running the same queries in Spark-SQL:
docker exec -it adhoc-1 /bin/bash
bash-4.4# $SPARK_INSTALL/bin/spark-shell --jars $HUDI_SPARK_BUNDLE --driver-class-path $HADOOP_CONF_DIR --conf spark.sql.hive.convertMetastoreParquet=false --deploy-mode client --driver-memory 1G --master local[2] --executor-memory 3G --num-executors 1 --packages com.databricks:spark-avro_2.11:4.0.0
# Copy On Write Table:
scala> spark.sql("select symbol, max(ts) from stock_ticks_cow group by symbol HAVING symbol = 'GOOG'").show(100, false)
+------+-------------------+
|symbol|max(ts) |
+------+-------------------+
|GOOG |2018-08-31 10:59:00|
+------+-------------------+
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG'").show(100, false)
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924221953 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924224524 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
As you can notice, the above queries now reflect the changes that came as part of ingesting second batch.
# Merge On Read Table:
# Read Optimized View
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG'").show(100, false)
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:29:00 |
+---------+----------------------+--+
1 row selected (1.6 seconds)
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG'").show(100, false)
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924222155 | GOOG | 2018-08-31 10:29:00 | 3391 | 1230.1899 | 1230.085 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Realtime View
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG'").show(100, false)
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG'").show(100, false)
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924222155 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924224537 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
exit
exit
Step 7 : Incremental Query for COPY-ON-WRITE Table
With 2 batches of data ingested, lets showcase the support for incremental queries in Hudi Copy-On-Write datasets
Lets take the same projection query example
docker exec -it adhoc-2 /bin/bash
beeline -u jdbc:hive2://hiveserver:10000 --hiveconf hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat --hiveconf hive.stats.autogather=false
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924064621 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924065039 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
As you notice from the above queries, there are 2 commits - 20180924064621 and 20180924065039 in timeline order. When you follow the steps, you will be getting different timestamps for commits. Substitute them in place of the above timestamps.
To show the effects of incremental-query, let us assume that a reader has already seen the changes as part of ingesting first batch. Now, for the reader to see effect of the second batch, he/she has to keep the start timestamp to the commit time of the first batch (20180924064621) and run incremental query
Hudi incremental mode provides efficient scanning for incremental queries by filtering out files that do not have any candidate rows using hudi-managed metadata.
docker exec -it adhoc-2 /bin/bash
beeline -u jdbc:hive2://hiveserver:10000 --hiveconf hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat --hiveconf hive.stats.autogather=false
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_cow.consume.mode=INCREMENTAL;
No rows affected (0.009 seconds)
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_cow.consume.max.commits=3;
No rows affected (0.009 seconds)
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_cow.consume.start.timestamp=20180924064621;
With the above setting, file-ids that do not have any updates from the commit 20180924065039 is filtered out without scanning. Here is the incremental query :
0: jdbc:hive2://hiveserver:10000>
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow where symbol = 'GOOG' and `_hoodie_commit_time` > '20180924064621';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924065039 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
1 row selected (0.83 seconds)
0: jdbc:hive2://hiveserver:10000>
Incremental Query with Spark SQL:
docker exec -it adhoc-1 /bin/bash
bash-4.4# $SPARK_INSTALL/bin/spark-shell --jars $HUDI_SPARK_BUNDLE --driver-class-path $HADOOP_CONF_DIR --conf spark.sql.hive.convertMetastoreParquet=false --deploy-mode client --driver-memory 1G --master local[2] --executor-memory 3G --num-executors 1 --packages com.databricks:spark-avro_2.11:4.0.0
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.3.1
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
Type in expressions to have them evaluated.
Type :help for more information.
scala> import org.apache.hudi.DataSourceReadOptions
import org.apache.hudi.DataSourceReadOptions
# In the below query, 20180925045257 is the first commit's timestamp
scala> val hoodieIncViewDF = spark.read.format("org.apache.hudi").option(DataSourceReadOptions.VIEW_TYPE_OPT_KEY, DataSourceReadOptions.VIEW_TYPE_INCREMENTAL_OPT_VAL).option(DataSourceReadOptions.BEGIN_INSTANTTIME_OPT_KEY, "20180924064621").load("/user/hive/warehouse/stock_ticks_cow")
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
hoodieIncViewDF: org.apache.spark.sql.DataFrame = [_hoodie_commit_time: string, _hoodie_commit_seqno: string ... 15 more fields]
scala> hoodieIncViewDF.registerTempTable("stock_ticks_cow_incr_tmp1")
warning: there was one deprecation warning; re-run with -deprecation for details
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_cow_incr_tmp1 where symbol = 'GOOG'").show(100, false);
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924065039 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
Step 8: Schedule and Run Compaction for Merge-On-Read dataset
Lets schedule and run a compaction to create a new version of columnar file so that read-optimized readers will see fresher data. Again, You can use Hudi CLI to manually schedule and run compaction
docker exec -it adhoc-1 /bin/bash
root@adhoc-1:/opt# /var/hoodie/ws/hudi-cli/hudi-cli.sh
============================================
* *
* _ _ _ _ *
* | | | | | | (_) *
* | |__| | __| | - *
* | __ || | / _` | || *
* | | | || || (_| | || *
* |_| |_|\___/ \____/ || *
* *
============================================
Welcome to Hoodie CLI. Please type help if you are looking for help.
hudi->connect --path /user/hive/warehouse/stock_ticks_mor
18/09/24 06:59:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/09/24 06:59:35 INFO table.HoodieTableMetaClient: Loading HoodieTableMetaClient from /user/hive/warehouse/stock_ticks_mor
18/09/24 06:59:35 INFO util.FSUtils: Hadoop Configuration: fs.defaultFS: [hdfs://namenode:8020], Config:[Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml], FileSystem: [DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_-1261652683_11, ugi=root (auth:SIMPLE)]]]
18/09/24 06:59:35 INFO table.HoodieTableConfig: Loading dataset properties from /user/hive/warehouse/stock_ticks_mor/.hoodie/hoodie.properties
18/09/24 06:59:36 INFO table.HoodieTableMetaClient: Finished Loading Table of type MERGE_ON_READ from /user/hive/warehouse/stock_ticks_mor
Metadata for table stock_ticks_mor loaded
# Ensure no compactions are present
hoodie:stock_ticks_mor->compactions show all
18/09/24 06:59:54 INFO timeline.HoodieActiveTimeline: Loaded instants [[20180924064636__clean__COMPLETED], [20180924064636__deltacommit__COMPLETED], [20180924065057__clean__COMPLETED], [20180924065057__deltacommit__COMPLETED]]
___________________________________________________________________
| Compaction Instant Time| State | Total FileIds to be Compacted|
|==================================================================|
# Schedule a compaction. This will use Spark Launcher to schedule compaction
hoodie:stock_ticks_mor->compaction schedule
....
Compaction successfully completed for 20180924070031
# Now refresh and check again. You will see that there is a new compaction requested
hoodie:stock_ticks->connect --path /user/hive/warehouse/stock_ticks_mor
18/09/24 07:01:16 INFO table.HoodieTableMetaClient: Loading HoodieTableMetaClient from /user/hive/warehouse/stock_ticks_mor
18/09/24 07:01:16 INFO util.FSUtils: Hadoop Configuration: fs.defaultFS: [hdfs://namenode:8020], Config:[Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml], FileSystem: [DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_-1261652683_11, ugi=root (auth:SIMPLE)]]]
18/09/24 07:01:16 INFO table.HoodieTableConfig: Loading dataset properties from /user/hive/warehouse/stock_ticks_mor/.hoodie/hoodie.properties
18/09/24 07:01:16 INFO table.HoodieTableMetaClient: Finished Loading Table of type MERGE_ON_READ from /user/hive/warehouse/stock_ticks_mor
Metadata for table stock_ticks_mor loaded
hoodie:stock_ticks_mor->compactions show all
18/09/24 06:34:12 INFO timeline.HoodieActiveTimeline: Loaded instants [[20180924041125__clean__COMPLETED], [20180924041125__deltacommit__COMPLETED], [20180924042735__clean__COMPLETED], [20180924042735__deltacommit__COMPLETED], [==>20180924063245__compaction__REQUESTED]]
___________________________________________________________________
| Compaction Instant Time| State | Total FileIds to be Compacted|
|==================================================================|
| 20180924070031 | REQUESTED| 1 |
# Execute the compaction. The compaction instant value passed below must be the one displayed in the above "compactions show all" query
hoodie:stock_ticks_mor->compaction run --compactionInstant 20180924070031 --parallelism 2 --sparkMemory 1G --schemaFilePath /var/demo/config/schema.avsc --retry 1
....
Compaction successfully completed for 20180924070031
## Now check if compaction is completed
hoodie:stock_ticks_mor->connect --path /user/hive/warehouse/stock_ticks_mor
18/09/24 07:03:00 INFO table.HoodieTableMetaClient: Loading HoodieTableMetaClient from /user/hive/warehouse/stock_ticks_mor
18/09/24 07:03:00 INFO util.FSUtils: Hadoop Configuration: fs.defaultFS: [hdfs://namenode:8020], Config:[Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml], FileSystem: [DFS[DFSClient[clientName=DFSClient_NONMAPREDUCE_-1261652683_11, ugi=root (auth:SIMPLE)]]]
18/09/24 07:03:00 INFO table.HoodieTableConfig: Loading dataset properties from /user/hive/warehouse/stock_ticks_mor/.hoodie/hoodie.properties
18/09/24 07:03:00 INFO table.HoodieTableMetaClient: Finished Loading Table of type MERGE_ON_READ from /user/hive/warehouse/stock_ticks_mor
Metadata for table stock_ticks_mor loaded
hoodie:stock_ticks->compactions show all
18/09/24 07:03:15 INFO timeline.HoodieActiveTimeline: Loaded instants [[20180924064636__clean__COMPLETED], [20180924064636__deltacommit__COMPLETED], [20180924065057__clean__COMPLETED], [20180924065057__deltacommit__COMPLETED], [20180924070031__commit__COMPLETED]]
___________________________________________________________________
| Compaction Instant Time| State | Total FileIds to be Compacted|
|==================================================================|
| 20180924070031 | COMPLETED| 1 |
Step 9: Run Hive Queries including incremental queries
You will see that both ReadOptimized and Realtime Views will show the latest committed data. Lets also run the incremental query for MOR table. From looking at the below query output, it will be clear that the fist commit time for the MOR table is 20180924064636 and the second commit time is 20180924070031
docker exec -it adhoc-2 /bin/bash
beeline -u jdbc:hive2://hiveserver:10000 --hiveconf hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat --hiveconf hive.stats.autogather=false
# Read Optimized View
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
1 row selected (1.6 seconds)
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924064636 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924070031 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Realtime View
0: jdbc:hive2://hiveserver:10000> select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG';
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924064636 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924070031 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Incremental View:
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_mor.consume.mode=INCREMENTAL;
No rows affected (0.008 seconds)
# Max-Commits covers both second batch and compaction commit
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_mor.consume.max.commits=3;
No rows affected (0.007 seconds)
0: jdbc:hive2://hiveserver:10000> set hoodie.stock_ticks_mor.consume.start.timestamp=20180924064636;
No rows affected (0.013 seconds)
# Query:
0: jdbc:hive2://hiveserver:10000> select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG' and `_hoodie_commit_time` > '20180924064636';
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924070031 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
exit
exit
Read Optimized and Realtime Views for MOR with Spark-SQL after compaction
docker exec -it adhoc-1 /bin/bash
bash-4.4# $SPARK_INSTALL/bin/spark-shell --jars $HUDI_SPARK_BUNDLE --driver-class-path $HADOOP_CONF_DIR --conf spark.sql.hive.convertMetastoreParquet=false --deploy-mode client --driver-memory 1G --master local[2] --executor-memory 3G --num-executors 1 --packages com.databricks:spark-avro_2.11:4.0.0
# Read Optimized View
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor group by symbol HAVING symbol = 'GOOG'").show(100, false)
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
1 row selected (1.6 seconds)
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor where symbol = 'GOOG'").show(100, false)
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924064636 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924070031 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
# Realtime View
scala> spark.sql("select symbol, max(ts) from stock_ticks_mor_rt group by symbol HAVING symbol = 'GOOG'").show(100, false)
+---------+----------------------+--+
| symbol | _c1 |
+---------+----------------------+--+
| GOOG | 2018-08-31 10:59:00 |
+---------+----------------------+--+
scala> spark.sql("select `_hoodie_commit_time`, symbol, ts, volume, open, close from stock_ticks_mor_rt where symbol = 'GOOG'").show(100, false)
+----------------------+---------+----------------------+---------+------------+-----------+--+
| _hoodie_commit_time | symbol | ts | volume | open | close |
+----------------------+---------+----------------------+---------+------------+-----------+--+
| 20180924064636 | GOOG | 2018-08-31 09:59:00 | 6330 | 1230.5 | 1230.02 |
| 20180924070031 | GOOG | 2018-08-31 10:59:00 | 9021 | 1227.1993 | 1227.215 |
+----------------------+---------+----------------------+---------+------------+-----------+--+
This brings the demo to an end.
Testing Hudi in Local Docker environment
You can bring up a hadoop docker environment containing Hadoop, Hive and Spark services with support for hudi.
$ mvn pre-integration-test -DskipTests
The above command builds docker images for all the services with current Hudi source installed at /var/hoodie/ws and also brings up the services using a compose file. We currently use Hadoop (v2.8.4), Hive (v2.3.3) and Spark (v2.3.1) in docker images.
To bring down the containers
$ cd hudi-integ-test
$ mvn docker-compose:down
If you want to bring up the docker containers, use
$ cd hudi-integ-test
$ mvn docker-compose:up -DdetachedMode=true
Hudi is a library that is operated in a broader data analytics/ingestion environment involving Hadoop, Hive and Spark. Interoperability with all these systems is a key objective for us. We are actively adding integration-tests under hudi-integ-test/src/test/java that makes use of this docker environment (See hudi-integ-test/src/test/java/org/apache/hudi/integ/ITTestHoodieSanity.java )
Building Local Docker Containers:
The docker images required for demo and running integration test are already in docker-hub. The docker images and compose scripts are carefully implemented so that they serve dual-purpose
- The docker images have inbuilt hudi jar files with environment variable pointing to those jars (HUDI_HADOOP_BUNDLE, …)
- For running integration-tests, we need the jars generated locally to be used for running services within docker. The
docker-compose scripts (see
docker/compose/docker-compose_hadoop284_hive233_spark231.yml
) ensures local jars override inbuilt jars by mounting local HUDI workspace over the docker location
This helps avoid maintaining separate docker images and avoids the costly step of building HUDI docker images locally.
But if users want to test hudi from locations with lower network bandwidth, they can still build local images
run the script
docker/build_local_docker_images.sh
to build local docker images before running docker/setup_demo.sh
Here are the commands:
cd docker
./build_local_docker_images.sh
.....
[INFO] Reactor Summary:
[INFO]
[INFO] hoodie ............................................. SUCCESS [ 1.709 s]
[INFO] hudi-common ...................................... SUCCESS [ 9.015 s]
[INFO] hudi-hadoop-mr ................................... SUCCESS [ 1.108 s]
[INFO] hudi-client ...................................... SUCCESS [ 4.409 s]
[INFO] hudi-hive ........................................ SUCCESS [ 0.976 s]
[INFO] hudi-spark ....................................... SUCCESS [ 26.522 s]
[INFO] hudi-utilities ................................... SUCCESS [ 16.256 s]
[INFO] hudi-cli ......................................... SUCCESS [ 11.341 s]
[INFO] hudi-hadoop-mr-bundle ............................ SUCCESS [ 1.893 s]
[INFO] hudi-hive-bundle ................................. SUCCESS [ 14.099 s]
[INFO] hudi-spark-bundle ................................ SUCCESS [ 58.252 s]
[INFO] hudi-hadoop-docker ............................... SUCCESS [ 0.612 s]
[INFO] hudi-hadoop-base-docker .......................... SUCCESS [04:04 min]
[INFO] hudi-hadoop-namenode-docker ...................... SUCCESS [ 6.142 s]
[INFO] hudi-hadoop-datanode-docker ...................... SUCCESS [ 7.763 s]
[INFO] hudi-hadoop-history-docker ....................... SUCCESS [ 5.922 s]
[INFO] hudi-hadoop-hive-docker .......................... SUCCESS [ 56.152 s]
[INFO] hudi-hadoop-sparkbase-docker ..................... SUCCESS [01:18 min]
[INFO] hudi-hadoop-sparkmaster-docker ................... SUCCESS [ 2.964 s]
[INFO] hudi-hadoop-sparkworker-docker ................... SUCCESS [ 3.032 s]
[INFO] hudi-hadoop-sparkadhoc-docker .................... SUCCESS [ 2.764 s]
[INFO] hudi-integ-test .................................. SUCCESS [ 1.785 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 09:15 min
[INFO] Finished at: 2018-09-10T17:47:37-07:00
[INFO] Final Memory: 236M/1848M
[INFO] ------------------------------------------------------------------------