Flink DataStream API Programming Guide
DataStream programs in Flink are regular programs that implement transformations on data streams(e.g., filtering, updating state, defining windows, aggregating). The data streams are initially created from varioussources (e.g., message queues, socket streams, files). Results are returned via sinks, which may forexample write the data to files, or to standard output (for example the command lineterminal). Flink programs run in a variety of contexts, standalone, or embedded in other programs.The execution can happen in a local JVM, or on clusters of many machines.
Please see basic concepts for an introductionto the basic concepts of the Flink API.
In order to create your own Flink DataStream program, we encourage you to start withanatomy of a Flink Programand gradually add your ownstream transformations. The remaining sections act as references for additionaloperations and advanced features.
Example Program
The following program is a complete, working example of streaming window word count application, that counts thewords coming from a web socket in 5 second windows. You can copy & paste the code to run it locally.
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
public class WindowWordCount {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> dataStream = env
.socketTextStream("localhost", 9999)
.flatMap(new Splitter())
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1);
dataStream.print();
env.execute("Window WordCount");
}
public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception {
for (String word: sentence.split(" ")) {
out.collect(new Tuple2<String, Integer>(word, 1));
}
}
}
}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
object WindowWordCount {
def main(args: Array[String]) {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val text = env.socketTextStream("localhost", 9999)
val counts = text.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
.map { (_, 1) }
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1)
counts.print()
env.execute("Window Stream WordCount")
}
}
To run the example program, start the input stream with netcat first from a terminal:
nc -lk 9999
Just type some words hitting return for a new word. These will be the input to theword count program. If you want to see counts greater than 1, type the same word again and again within5 seconds (increase the window size from 5 seconds if you cannot type that fast ☺).
Data Sources
Sources are where your program reads its input from. You can attach a source to your program byusing StreamExecutionEnvironment.addSource(sourceFunction)
. Flink comes with a number of pre-implementedsource functions, but you can always write your own custom sources by implementing the SourceFunction
for non-parallel sources, or by implementing the ParallelSourceFunction
interface or extending theRichParallelSourceFunction
for parallel sources.
There are several predefined stream sources accessible from the StreamExecutionEnvironment
:
File-based:
readTextFile(path)
- Reads text files, i.e. files that respect theTextInputFormat
specification, line-by-line and returns them as Strings.readFile(fileInputFormat, path)
- Reads (once) files as dictated by the specified file input format.readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo)
- This is the method called internally by the two previous ones. It reads files in thepath
based on the givenfileInputFormat
. Depending on the providedwatchType
, this source may periodically monitor (everyinterval
ms) the path for new data (FileProcessingMode.PROCESS_CONTINUOUSLY
), or process once the data currently in the path and exit (FileProcessingMode.PROCESS_ONCE
). Using thepathFilter
, the user can further exclude files from being processed.
IMPLEMENTATION:
Under the hood, Flink splits the file reading process into two sub-tasks, namely directory monitoring and data reading. Each of these sub-tasks is implemented by a separate entity. Monitoring is implemented by a single, non-parallel (parallelism = 1) task, while reading is performed by multiple tasks running in parallel. The parallelism of the latter is equal to the job parallelism. The role of the single monitoring task is to scan the directory (periodically or only once depending on the watchType
), find the files to be processed, divide them in splits, and assign these splits to the downstream readers. The readers are the ones who will read the actual data. Each split is read by only one reader, while a reader can read multiple splits, one-by-one.
IMPORTANT NOTES:
If the
watchType
is set toFileProcessingMode.PROCESS_CONTINUOUSLY
, when a file is modified, its contents are re-processed entirely. This can break the “exactly-once” semantics, as appending data at the end of a file will lead to all its contents being re-processed.If the
watchType
is set toFileProcessingMode.PROCESS_ONCE
, the source scans the path once and exits, without waiting for the readers to finish reading the file contents. Of course the readers will continue reading until all file contents are read. Closing the source leads to no more checkpoints after that point. This may lead to slower recovery after a node failure, as the job will resume reading from the last checkpoint.
Socket-based:
socketTextStream
- Reads from a socket. Elements can be separated by a delimiter.Collection-based:fromCollection(Collection)
- Creates a data stream from the Java Java.util.Collection. All elementsin the collection must be of the same type.fromCollection(Iterator, Class)
- Creates a data stream from an iterator. The class specifies thedata type of the elements returned by the iterator.fromElements(T …)
- Creates a data stream from the given sequence of objects. All objects must beof the same type.fromParallelCollection(SplittableIterator, Class)
- Creates a data stream from an iterator, inparallel. The class specifies the data type of the elements returned by the iterator.generateSequence(from, to)
- Generates the sequence of numbers in the given interval, inparallel.
Custom:
addSource
- Attach a new source function. For example, to read from Apache Kafka you can useaddSource(new FlinkKafkaConsumer08<>(…))
. See connectors for more details.
Sources are where your program reads its input from. You can attach a source to your program byusing StreamExecutionEnvironment.addSource(sourceFunction)
. Flink comes with a number of pre-implementedsource functions, but you can always write your own custom sources by implementing the SourceFunction
for non-parallel sources, or by implementing the ParallelSourceFunction
interface or extending theRichParallelSourceFunction
for parallel sources.
There are several predefined stream sources accessible from the StreamExecutionEnvironment
:
File-based:
readTextFile(path)
- Reads text files, i.e. files that respect theTextInputFormat
specification, line-by-line and returns them as Strings.readFile(fileInputFormat, path)
- Reads (once) files as dictated by the specified file input format.readFile(fileInputFormat, path, watchType, interval, pathFilter)
- This is the method called internally by the two previous ones. It reads files in thepath
based on the givenfileInputFormat
. Depending on the providedwatchType
, this source may periodically monitor (everyinterval
ms) the path for new data (FileProcessingMode.PROCESS_CONTINUOUSLY
), or process once the data currently in the path and exit (FileProcessingMode.PROCESS_ONCE
). Using thepathFilter
, the user can further exclude files from being processed.
IMPLEMENTATION:
Under the hood, Flink splits the file reading process into two sub-tasks, namely directory monitoring and data reading. Each of these sub-tasks is implemented by a separate entity. Monitoring is implemented by a single, non-parallel (parallelism = 1) task, while reading is performed by multiple tasks running in parallel. The parallelism of the latter is equal to the job parallelism. The role of the single monitoring task is to scan the directory (periodically or only once depending on the watchType
), find the files to be processed, divide them in splits, and assign these splits to the downstream readers. The readers are the ones who will read the actual data. Each split is read by only one reader, while a reader can read multiple splits, one-by-one.
IMPORTANT NOTES:
If the
watchType
is set toFileProcessingMode.PROCESS_CONTINUOUSLY
, when a file is modified, its contents are re-processed entirely. This can break the “exactly-once” semantics, as appending data at the end of a file will lead to all its contents being re-processed.If the
watchType
is set toFileProcessingMode.PROCESS_ONCE
, the source scans the path once and exits, without waiting for the readers to finish reading the file contents. Of course the readers will continue reading until all file contents are read. Closing the source leads to no more checkpoints after that point. This may lead to slower recovery after a node failure, as the job will resume reading from the last checkpoint.
Socket-based:
socketTextStream
- Reads from a socket. Elements can be separated by a delimiter.Collection-based:fromCollection(Seq)
- Creates a data stream from the Java Java.util.Collection. All elementsin the collection must be of the same type.fromCollection(Iterator)
- Creates a data stream from an iterator. The class specifies thedata type of the elements returned by the iterator.fromElements(elements: _*)
- Creates a data stream from the given sequence of objects. All objects must beof the same type.fromParallelCollection(SplittableIterator)
- Creates a data stream from an iterator, inparallel. The class specifies the data type of the elements returned by the iterator.generateSequence(from, to)
- Generates the sequence of numbers in the given interval, inparallel.
Custom:
addSource
- Attach a new source function. For example, to read from Apache Kafka you can useaddSource(new FlinkKafkaConsumer08<>(…))
. See connectors for more details.
DataStream Transformations
Please see operators for an overview of the available stream transformations.
Data Sinks
Data sinks consume DataStreams and forward them to files, sockets, external systems, or print them.Flink comes with a variety of built-in output formats that are encapsulated behind operations on theDataStreams:
writeAsText()
/TextOutputFormat
- Writes elements line-wise as Strings. The Strings areobtained by calling the toString() method of each element.writeAsCsv(…)
/CsvOutputFormat
- Writes tuples as comma-separated value files. Row and fielddelimiters are configurable. The value for each field comes from the toString() method of the objects.print()
/printToErr()
- Prints the toString() valueof each element on the standard out / standard error stream. Optionally, a prefix (msg) can be provided which isprepended to the output. This can help to distinguish between different calls to print. If the parallelism isgreater than 1, the output will also be prepended with the identifier of the task which produced the output.writeUsingOutputFormat()
/FileOutputFormat
- Method and base class for custom file outputs. Supportscustom object-to-bytes conversion.writeToSocket
- Writes elements to a socket according to aSerializationSchema
addSink
- Invokes a custom sink function. Flink comes bundled with connectors to other systems (such as Apache Kafka) that are implemented as sink functions.
Data sinks consume DataStreams and forward them to files, sockets, external systems, or print them.Flink comes with a variety of built-in output formats that are encapsulated behind operations on theDataStreams:
writeAsText()
/TextOutputFormat
- Writes elements line-wise as Strings. The Strings areobtained by calling the toString() method of each element.writeAsCsv(…)
/CsvOutputFormat
- Writes tuples as comma-separated value files. Row and fielddelimiters are configurable. The value for each field comes from the toString() method of the objects.print()
/printToErr()
- Prints the toString() valueof each element on the standard out / standard error stream. Optionally, a prefix (msg) can be provided which isprepended to the output. This can help to distinguish between different calls to print. If the parallelism isgreater than 1, the output will also be prepended with the identifier of the task which produced the output.writeUsingOutputFormat()
/FileOutputFormat
- Method and base class for custom file outputs. Supportscustom object-to-bytes conversion.writeToSocket
- Writes elements to a socket according to aSerializationSchema
addSink
- Invokes a custom sink function. Flink comes bundled with connectors to other systems (such as Apache Kafka) that are implemented as sink functions.
Note that the write*()
methods on DataStream
are mainly intended for debugging purposes.They are not participating in Flink’s checkpointing, this means these functions usually haveat-least-once semantics. The data flushing to the target system depends on the implementation of theOutputFormat. This means that not all elements send to the OutputFormat are immediately showing upin the target system. Also, in failure cases, those records might be lost.
For reliable, exactly-once delivery of a stream into a file system, use the flink-connector-filesystem
.Also, custom implementations through the .addSink(…)
method can participate in Flink’s checkpointingfor exactly-once semantics.
Iterations
Iterative streaming programs implement a step function and embed it into an IterativeStream
. As a DataStreamprogram may never finish, there is no maximum number of iterations. Instead, you need to specify which partof the stream is fed back to the iteration and which part is forwarded downstream using a split
transformationor a filter
. Here, we show an example using filters. First, we define an IterativeStream
IterativeStream<Integer> iteration = input.iterate();
Then, we specify the logic that will be executed inside the loop using a series of transformations (herea simple map
transformation)
DataStream<Integer> iterationBody = iteration.map(/* this is executed many times */);
To close an iteration and define the iteration tail, call the closeWith(feedbackStream)
method of the IterativeStream
.The DataStream given to the closeWith
function will be fed back to the iteration head.A common pattern is to use a filter to separate the part of the stream that is fed back,and the part of the stream which is propagated forward. These filters can, e.g., definethe “termination” logic, where an element is allowed to propagate downstream ratherthan being fed back.
iteration.closeWith(iterationBody.filter(/* one part of the stream */));
DataStream<Integer> output = iterationBody.filter(/* some other part of the stream */);
For example, here is program that continuously subtracts 1 from a series of integers until they reach zero:
DataStream<Long> someIntegers = env.generateSequence(0, 1000);
IterativeStream<Long> iteration = someIntegers.iterate();
DataStream<Long> minusOne = iteration.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
return value - 1 ;
}
});
DataStream<Long> stillGreaterThanZero = minusOne.filter(new FilterFunction<Long>() {
@Override
public boolean filter(Long value) throws Exception {
return (value > 0);
}
});
iteration.closeWith(stillGreaterThanZero);
DataStream<Long> lessThanZero = minusOne.filter(new FilterFunction<Long>() {
@Override
public boolean filter(Long value) throws Exception {
return (value <= 0);
}
});
Iterative streaming programs implement a step function and embed it into an IterativeStream
. As a DataStreamprogram may never finish, there is no maximum number of iterations. Instead, you need to specify which partof the stream is fed back to the iteration and which part is forwarded downstream using a split
transformationor a filter
. Here, we show an example iteration where the body (the part of the computation that is repeated)is a simple map transformation, and the elements that are fed back are distinguished by the elements thatare forwarded downstream using filters.
val iteratedStream = someDataStream.iterate(
iteration => {
val iterationBody = iteration.map(/* this is executed many times */)
(iterationBody.filter(/* one part of the stream */), iterationBody.filter(/* some other part of the stream */))
})
For example, here is program that continuously subtracts 1 from a series of integers until they reach zero:
val someIntegers: DataStream[Long] = env.generateSequence(0, 1000)
val iteratedStream = someIntegers.iterate(
iteration => {
val minusOne = iteration.map( v => v - 1)
val stillGreaterThanZero = minusOne.filter (_ > 0)
val lessThanZero = minusOne.filter(_ <= 0)
(stillGreaterThanZero, lessThanZero)
}
)
Execution Parameters
The StreamExecutionEnvironment
contains the ExecutionConfig
which allows to set job specific configuration values for the runtime.
Please refer to execution configurationfor an explanation of most parameters. These parameters pertain specifically to the DataStream API:
setAutoWatermarkInterval(long milliseconds)
: Set the interval for automatic watermark emission. You can get the current value withlong getAutoWatermarkInterval()
Fault Tolerance
State & Checkpointing describes how to enable and configure Flink’s checkpointing mechanism.
Controlling Latency
By default, elements are not transferred on the network one-by-one (which would cause unnecessary network traffic)but are buffered. The size of the buffers (which are actually transferred between machines) can be set in the Flink config files.While this method is good for optimizing throughput, it can cause latency issues when the incoming stream is not fast enough.To control throughput and latency, you can use env.setBufferTimeout(timeoutMillis)
on the execution environment(or on individual operators) to set a maximum wait time for the buffers to fill up. After this time, thebuffers are sent automatically even if they are not full. The default value for this timeout is 100 ms.
Usage:
LocalStreamEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
env.setBufferTimeout(timeoutMillis);
env.generateSequence(1,10).map(new MyMapper()).setBufferTimeout(timeoutMillis);
val env: LocalStreamEnvironment = StreamExecutionEnvironment.createLocalEnvironment
env.setBufferTimeout(timeoutMillis)
env.generateSequence(1,10).map(myMap).setBufferTimeout(timeoutMillis)
To maximize throughput, set setBufferTimeout(-1)
which will remove the timeout and buffers will only beflushed when they are full. To minimize latency, set the timeout to a value close to 0 (for example 5 or 10 ms).A buffer timeout of 0 should be avoided, because it can cause severe performance degradation.
Debugging
Before running a streaming program in a distributed cluster, it is a goodidea to make sure that the implemented algorithm works as desired. Hence, implementing data analysisprograms is usually an incremental process of checking results, debugging, and improving.
Flink provides features to significantly ease the development process of data analysisprograms by supporting local debugging from within an IDE, injection of test data, and collection ofresult data. This section give some hints how to ease the development of Flink programs.
Local Execution Environment
A LocalStreamEnvironment
starts a Flink system within the same JVM process it was created in. If youstart the LocalEnvironment from an IDE, you can set breakpoints in your code and easily debug yourprogram.
A LocalEnvironment is created and used as follows:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
DataStream<String> lines = env.addSource(/* some source */);
// build your program
env.execute();
val env = StreamExecutionEnvironment.createLocalEnvironment()
val lines = env.addSource(/* some source */)
// build your program
env.execute()
Collection Data Sources
Flink provides special data sources which are backedby Java collections to ease testing. Once a program has been tested, the sources and sinks can beeasily replaced by sources and sinks that read from / write to external systems.
Collection data sources can be used as follows:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
// Create a DataStream from a list of elements
DataStream<Integer> myInts = env.fromElements(1, 2, 3, 4, 5);
// Create a DataStream from any Java collection
List<Tuple2<String, Integer>> data = ...
DataStream<Tuple2<String, Integer>> myTuples = env.fromCollection(data);
// Create a DataStream from an Iterator
Iterator<Long> longIt = ...
DataStream<Long> myLongs = env.fromCollection(longIt, Long.class);
val env = StreamExecutionEnvironment.createLocalEnvironment()
// Create a DataStream from a list of elements
val myInts = env.fromElements(1, 2, 3, 4, 5)
// Create a DataStream from any Collection
val data: Seq[(String, Int)] = ...
val myTuples = env.fromCollection(data)
// Create a DataStream from an Iterator
val longIt: Iterator[Long] = ...
val myLongs = env.fromCollection(longIt)
Note: Currently, the collection data source requires that data types and iterators implementSerializable
. Furthermore, collection data sources can not be executed in parallel (parallelism = 1).
Iterator Data Sink
Flink also provides a sink to collect DataStream results for testing and debugging purposes. It can be used as follows:
import org.apache.flink.streaming.experimental.DataStreamUtils
DataStream<Tuple2<String, Integer>> myResult = ...
Iterator<Tuple2<String, Integer>> myOutput = DataStreamUtils.collect(myResult)
import org.apache.flink.streaming.experimental.DataStreamUtils
import scala.collection.JavaConverters.asScalaIteratorConverter
val myResult: DataStream[(String, Int)] = ...
val myOutput: Iterator[(String, Int)] = DataStreamUtils.collect(myResult.javaStream).asScala
Note: flink-streaming-contrib
module is removed from Flink 1.5.0.Its classes have been moved into flink-streaming-java
and flink-streaming-scala
.
Where to go next?
- Operators: Specification of available streaming operators.
- Event Time: Introduction to Flink’s notion of time.
- State & Fault Tolerance: Explanation of how to develop stateful applications.
- Connectors: Description of available input and output connectors.