Protobuf
This Apache Druid extension enables Druid to ingest and understand the Protobuf data format. Make sure to include druid-protobuf-extensions
in the extensions load list.
The druid-protobuf-extensions
provides the Protobuf Parser for stream ingestion. See corresponding docs for details.
Example: Load Protobuf messages from Kafka
This example demonstrates how to load Protobuf messages from Kafka. Please read the Load from Kafka tutorial first, and see Kafka Indexing Service documentation for more details.
The files used in this example are found at ./examples/quickstart/protobuf
in your Druid directory.
For this example:
- Kafka broker host is
localhost:9092
- Kafka topic is
metrics_pb
- Datasource name is
metrics-protobuf
Here is a JSON example of the ‘metrics’ data schema used in the example.
{
"unit": "milliseconds",
"http_method": "GET",
"value": 44,
"timestamp": "2017-04-06T02:36:22Z",
"http_code": "200",
"page": "/",
"metricType": "request/latency",
"server": "www1.example.com"
}
Proto file
The corresponding proto file for our ‘metrics’ dataset looks like this. You can use Protobuf inputFormat
with a proto file or Confluent Schema Registry.
syntax = "proto3";
message Metrics {
string unit = 1;
string http_method = 2;
int32 value = 3;
string timestamp = 4;
string http_code = 5;
string page = 6;
string metricType = 7;
string server = 8;
}
When using a descriptor file
Next, we use the protoc
Protobuf compiler to generate the descriptor file and save it as metrics.desc
. The descriptor file must be either in the classpath or reachable by URL. In this example the descriptor file was saved at /tmp/metrics.desc
, however this file is also available in the example files. From your Druid install directory:
protoc -o /tmp/metrics.desc ./quickstart/protobuf/metrics.proto
When using Schema Registry
Make sure your Schema Registry version is later than 5.5. Next, we can post a schema to add it to the registry:
POST /subjects/test/versions HTTP/1.1
Host: schemaregistry.example1.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, application/json
{
"schemaType": "PROTOBUF",
"schema": "syntax = \"proto3\";\nmessage Metrics {\n string unit = 1;\n string http_method = 2;\n int32 value = 3;\n string timestamp = 4;\n string http_code = 5;\n string page = 6;\n string metricType = 7;\n string server = 8;\n}\n"
}
This feature uses Confluent’s Protobuf provider which is not included in the Druid distribution and must be installed separately. You can fetch it and its dependencies from the Confluent repository and Maven Central at:
- https://packages.confluent.io/maven/io/confluent/kafka-protobuf-provider/6.0.1/kafka-protobuf-provider-6.0.1.jar
- https://repo1.maven.org/maven2/org/jetbrains/kotlin/kotlin-stdlib/1.4.0/kotlin-stdlib-1.4.0.jar
- https://repo1.maven.org/maven2/com/squareup/wire/wire-schema/3.2.2/wire-schema-3.2.2.jar
Copy or symlink those files inside the folder extensions/protobuf-extensions
under the distribution root directory.
Create Kafka Supervisor
Below is the complete Supervisor spec JSON to be submitted to the Overlord. Make sure these keys are properly configured for successful ingestion.
When using a descriptor file
Important supervisor properties
protoBytesDecoder.descriptor
for the descriptor file URLprotoBytesDecoder.protoMessageType
from the proto definitionprotoBytesDecoder.type
set tofile
, indicate use descriptor file to decode Protobuf fileinputFormat
should havetype
set toprotobuf
{
"type": "kafka",
"spec": {
"dataSchema": {
"dataSource": "metrics-protobuf",
"timestampSpec": {
"column": "timestamp",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [
"unit",
"http_method",
"http_code",
"page",
"metricType",
"server"
],
"dimensionExclusions": [
"timestamp",
"value"
]
},
"metricsSpec": [
{
"name": "count",
"type": "count"
},
{
"name": "value_sum",
"fieldName": "value",
"type": "doubleSum"
},
{
"name": "value_min",
"fieldName": "value",
"type": "doubleMin"
},
{
"name": "value_max",
"fieldName": "value",
"type": "doubleMax"
}
],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "HOUR",
"queryGranularity": "NONE"
}
},
"tuningConfig": {
"type": "kafka",
"maxRowsPerSegment": 5000000
},
"ioConfig": {
"topic": "metrics_pb",
"consumerProperties": {
"bootstrap.servers": "localhost:9092"
},
"inputFormat": {
"type": "protobuf",
"protoBytesDecoder": {
"type": "file",
"descriptor": "file:///tmp/metrics.desc",
"protoMessageType": "Metrics"
},
"flattenSpec": {
"useFieldDiscovery": true
},
"binaryAsString": false
},
"taskCount": 1,
"replicas": 1,
"taskDuration": "PT1H",
"type": "kafka"
}
}
}
To adopt to old version. You can use old parser style, which also works.
{
"parser": {
"type": "protobuf",
"descriptor": "file:///tmp/metrics.desc",
"protoMessageType": "Metrics"
}
}
When using Schema Registry
Important supervisor properties
protoBytesDecoder.url
for the schema registry URL with single instance.protoBytesDecoder.urls
for the schema registry URLs with multi instances.protoBytesDecoder.capacity
capacity for schema registry cached schemas.protoBytesDecoder.config
to send additional configurations, configured for Schema Registry.protoBytesDecoder.headers
to send headers to the Schema Registry.protoBytesDecoder.type
set toschema_registry
, indicate use schema registry to decode Protobuf file.parser
should havetype
set toprotobuf
, but note that theformat
of theparseSpec
must bejson
.
{
"parser": {
"type": "protobuf",
"protoBytesDecoder": {
"urls": ["http://schemaregistry.example1.com:8081","http://schemaregistry.example2.com:8081"],
"type": "schema_registry",
"capacity": 100,
"config" : {
"basic.auth.credentials.source": "USER_INFO",
"basic.auth.user.info": "fred:letmein",
"schema.registry.ssl.truststore.location": "/some/secrets/kafka.client.truststore.jks",
"schema.registry.ssl.truststore.password": "<password>",
"schema.registry.ssl.keystore.location": "/some/secrets/kafka.client.keystore.jks",
"schema.registry.ssl.keystore.password": "<password>",
"schema.registry.ssl.key.password": "<password>",
...
},
"headers": {
"traceID" : "b29c5de2-0db4-490b-b421",
"timeStamp" : "1577191871865",
...
}
}
}
}
Adding Protobuf messages to Kafka
If necessary, from your Kafka installation directory run the following command to create the Kafka topic
./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic metrics_pb
This example script requires protobuf
and kafka-python
modules. With the topic in place, messages can be inserted running the following command from your Druid installation directory
./bin/generate-example-metrics | python /quickstart/protobuf/pb_publisher.py
You can confirm that data has been inserted to your Kafka topic using the following command from your Kafka installation directory
./bin/kafka-console-consumer --zookeeper localhost --topic metrics_pb
which should print messages like this
millisecondsGETR"2017-04-06T03:23:56Z*2002/list:request/latencyBwww1.example.com
If your supervisor created in the previous step is running, the indexing tasks should begin producing the messages and the data will soon be available for querying in Druid.
Generating the example files
The files provided in the example quickstart can be generated in the following manner starting with only metrics.proto
.
metrics.desc
The descriptor file is generated using protoc
Protobuf compiler. Given a .proto
file, a .desc
file can be generated like so.
protoc -o metrics.desc metrics.proto
metrics_pb2.py
metrics_pb2.py
is also generated with protoc
protoc -o metrics.desc metrics.proto --python_out=.
pb_publisher.py
After metrics_pb2.py
is generated, another script can be constructed to parse JSON data, convert it to Protobuf, and produce to a Kafka topic
#!/usr/bin/env python
import sys
import json
from kafka import KafkaProducer
from metrics_pb2 import Metrics
producer = KafkaProducer(bootstrap_servers='localhost:9092')
topic = 'metrics_pb'
for row in iter(sys.stdin):
d = json.loads(row)
metrics = Metrics()
for k, v in d.items():
setattr(metrics, k, v)
pb = metrics.SerializeToString()
producer.send(topic, pb)
producer.flush()