使用窗口函数分析数据
本教程简要介绍 Drill 1.2 的分析,即分析窗口函数的 ANSI SQL 标准。Drill 支持以下窗口函数:
- PARTITION BY 和 OVER 语法
- 不同种类的聚合函数,如 Sum,Max,Min,Count,Avg
- 解析函数,例如 First_Value, Last_Value, Lead, Lag, NTile, Row_Number 和 Rank
窗口函数是多功能的。你可以减少连接,子查询,和显示游标,你只需要写而已。窗口函数以最小的编码工作,解决了各种复杂的情况。
本教程建立在前面的教程之上,A-Y-A-D 数据分析 和 高度动态的数据集分析,并且使用的是相同的 Yelp 数据集。
开始
- 在开始前,下载 Yelp(商业评论)。
- 安装并启动 Drill。
在 Drill 中列出可用的 Schema。
SHOW schemas;
+---------------------+
| SCHEMA_NAME |
+---------------------+
| INFORMATION_SCHEMA |
| cp.default |
| dfs.default |
| dfs.root |
| dfs.tmp |
| dfs.yelp |
| sys |
+---------------------+
7 rows selected (1.755 seconds)
切换工作目录。
USE dfs.yelp;
+-------+---------------------------------------+
| ok | summary |
+-------+---------------------------------------+
| true | Default schema changed to [dfs.yelp] |
+-------+---------------------------------------+
1 row selected (0.129 seconds)
开始探索 Yelp 中可用的数据集信息。
SELECT * FROM `business.json` LIMIT 1;
+------------------------+-----------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------+--------------------------------+---------+--------------+-------------------+-------------+-------+-------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+
| business_id | full_address | hours | open | categories | city | review_count | name | longitude | state | stars | latitude | attributes | type | neighborhoods |
+------------------------+--------------+------+-------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------+--------------------------------+---------+--------------+-------------------+-------------+-------+-------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+
| vcNAWiLM4dR7D2nwwJ7nCA | 4840 E Indian School Rd Ste 101 Phoenix, AZ 85018 | {"Tuesday":{"close":"17:00","open":"08:00"},"Friday":{"close":"17:00","open":"08:00"},"Monday":{"close":"17:00","open":"08:00"},"Wednesday":{"close":"17:00","open":"08:00"},"Thursday":{"close":"17:00","open":"08:00"},"Sunday":{},"Saturday":{}} | true | ["Doctors","Health & Medical"] | Phoenix | 7 | Eric Goldberg, MD | -111.983758 | AZ | 3.5 | 33.499313 | {"By Appointment Only":true,"Good Ambience":{},"Parking":{},"Music":{},"Hair Types Specialized In":{},"Payment Types":{},"Dietary Restrictions":{}} | business | [] |
+-------------+--------------+-------+------+------------+------+--------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------+--------------------------------+---------+--------------+-------------------+-------------+-------+-------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------+----------+---------------+
1 row selected (0.514 seconds)
使用窗口函数做简单的查询
获取 Yelp 的业务基础评论数据。
SELECT name, city, review_count, row_number()
OVER (PARTITION BY city ORDER BY review_count DESC) AS rownum
FROM `business.json` LIMIT 15;
+----------------------------------------+------------+---------------+---------+
| name | city | review_count | rownum |
+----------------------------------------+------------+---------------+---------+
| Cupz N' Crepes | Ahwatukee | 124 | 1 |
| My Wine Cellar | Ahwatukee | 98 | 2 |
| Kathy's Alterations | Ahwatukee | 12 | 3 |
| McDonald's | Ahwatukee | 7 | 4 |
| U-Haul | Ahwatukee | 5 | 5 |
| Hi-Health | Ahwatukee | 4 | 6 |
| Healthy and Clean Living Environments | Ahwatukee | 4 | 7 |
| Active Kids Pediatrics | Ahwatukee | 4 | 8 |
| Roberto's Authentic Mexican Food | Anthem | 117 | 1 |
| Q to U BBQ | Anthem | 74 | 2 |
| Outlets At Anthem | Anthem | 64 | 3 |
| Dara Thai | Anthem | 56 | 4 |
| Cafe Provence | Anthem | 53 | 5 |
| Shanghai Club | Anthem | 50 | 6 |
| Two Brothers Kitchen | Anthem | 43 | 7 |
+----------------------------------------+------------+---------------+---------+
15 rows selected (0.67 seconds)
检查每个业务的数量相比在城市的所有业务的平均数量的评论。
SELECT name, city,review_count,
Avg(review_count) OVER (PARTITION BY City) AS city_reviews_avg
FROM `business.json` LIMIT 15;
+----------------------------------------+------------+---------------+---------------------+
| name | city | review_count | city_reviews_avg |
+----------------------------------------+------------+---------------+---------------------+
| Hi-Health | Ahwatukee | 4 | 32.25 |
| My Wine Cellar | Ahwatukee | 98 | 32.25 |
| U-Haul | Ahwatukee | 5 | 32.25 |
| Cupz N' Crepes | Ahwatukee | 124 | 32.25 |
| McDonald's | Ahwatukee | 7 | 32.25 |
| Kathy's Alterations | Ahwatukee | 12 | 32.25 |
| Healthy and Clean Living Environments | Ahwatukee | 4 | 32.25 |
| Active Kids Pediatrics | Ahwatukee | 4 | 32.25 |
| Anthem Community Center | Anthem | 4 | 14.492063492063492 |
| Scrapbooks To Remember | Anthem | 4 | 14.492063492063492 |
| Hungry Howie's Pizza | Anthem | 7 | 14.492063492063492 |
| Pinata Nueva | Anthem | 3 | 14.492063492063492 |
| Starbucks Coffee Company | Anthem | 13 | 14.492063492063492 |
| Pizza Hut | Anthem | 6 | 14.492063492063492 |
| Rays Pizza | Anthem | 19 | 14.492063492063492 |
+----------------------------------------+------------+---------------+---------------------+
15 rows selected (0.395 seconds)
检查每个企业的评论数量为城市的所有业务的总数量的贡献。
SELECT name, city,review_count,
Sum(review_count) OVER (PARTITION BY City) AS city_reviews_sum
FROM `business.json`limit 15;
+----------------------------------------+------------+---------------+-------------------+
| name | city | review_count | city_reviews_sum |
+----------------------------------------+------------+---------------+-------------------+
| Hi-Health | Ahwatukee | 4 | 258 |
| My Wine Cellar | Ahwatukee | 98 | 258 |
| U-Haul | Ahwatukee | 5 | 258 |
| Cupz N' Crepes | Ahwatukee | 124 | 258 |
| McDonald's | Ahwatukee | 7 | 258 |
| Kathy's Alterations | Ahwatukee | 12 | 258 |
| Healthy and Clean Living Environments | Ahwatukee | 4 | 258 |
| Active Kids Pediatrics | Ahwatukee | 4 | 258 |
| Anthem Community Center | Anthem | 4 | 913 |
| Scrapbooks To Remember | Anthem | 4 | 913 |
| Hungry Howie's Pizza | Anthem | 7 | 913 |
| Pinata Nueva | Anthem | 3 | 913 |
| Starbucks Coffee Company | Anthem | 13 | 913 |
| Pizza Hut | Anthem | 6 | 913 |
| Rays Pizza | Anthem | 19 | 913 |
+----------------------------------------+------------+---------------+-------------------+
15 rows selected (0.543 seconds)
使用窗口函数进行复杂查询
排名前 10 名的城市和他们的排名最高的企业数量的评论。使用 Drill 窗口函数,例如 rank,dense_sank。
WITH X
AS
(SELECT name, city, review_count,
RANK()
OVER (PARTITION BY city
ORDER BY review_count DESC) AS review_rank
FROM `business.json`)
SELECT X.name, X.city, X.review_count
FROM X
WHERE X.review_rank =1 ORDER BY review_count DESC LIMIT 10;
+-------------------------------------------+-------------+---------------+
| name | city | review_count |
+-------------------------------------------+-------------+---------------+
| Mon Ami Gabi | Las Vegas | 4084 |
| Studio B | Henderson | 1336 |
| Phoenix Sky Harbor International Airport | Phoenix | 1325 |
| Four Peaks Brewing Co | Tempe | 1110 |
| The Mission | Scottsdale | 783 |
| Joe's Farm Grill | Gilbert | 770 |
| The Old Fashioned | Madison | 619 |
| Cornish Pasty Company | Mesa | 578 |
| SanTan Brewing Company | Chandler | 469 |
| Yard House | Glendale | 321 |
+-------------------------------------------+-------------+---------------+
10 rows selected (0.49 seconds)
在城市的顶部和底部的评论计数的每个业务的评论数量比较。
SELECT name, city, review_count,
FIRST_VALUE(review_count)
OVER(PARTITION BY city ORDER BY review_count DESC) AS top_review_count,
LAST_VALUE(review_count)
OVER(PARTITION BY city ORDER BY review_count DESC) AS bottom_review_count
FROM `business.json` limit 15;
+----------------------------------------+------------+---------------+-------------------+----------------------+
| name | city | review_count | top_review_count | bottom_review_count |
+----------------------------------------+------------+---------------+-------------------+----------------------+
| My Wine Cellar | Ahwatukee | 98 | 124 | 12 |
| McDonald's | Ahwatukee | 7 | 124 | 12 |
| U-Haul | Ahwatukee | 5 | 124 | 12 |
| Hi-Health | Ahwatukee | 4 | 124 | 12 |
| Healthy and Clean Living Environments | Ahwatukee | 4 | 124 | 12 |
| Active Kids Pediatrics | Ahwatukee | 4 | 124 | 12 |
| Cupz N' Crepes | Ahwatukee | 124 | 124 | 12 |
| Kathy's Alterations | Ahwatukee | 12 | 124 | 12 |
| Q to U BBQ | Anthem | 74 | 117 | 117 |
| Dara Thai | Anthem | 56 | 117 | 117 |
| Cafe Provence | Anthem | 53 | 117 | 117 |
| Shanghai Club | Anthem | 50 | 117 | 117 |
| Two Brothers Kitchen | Anthem | 43 | 117 | 117 |
| The Tennessee Grill | Anthem | 32 | 117 | 117 |
| Dollyrockers Boutique and Salon | Anthem | 30 | 117 | 117 |
+----------------------------------------+------------+---------------+-------------------+----------------------+
15 rows selected (0.516 seconds)
比较前后的业务评论数量。
SELECT city, review_count, name,
LAG(review_count, 1) OVER(PARTITION BY city ORDER BY review_count DESC)
AS preceding_count,
LEAD(review_count, 1) OVER(PARTITION BY city ORDER BY review_count DESC)
AS following_count
FROM `business.json` limit 15;
+------------+---------------+----------------------------------------+------------------+------------------+
| city | review_count | name | preceding_count | following_count |
+------------+---------------+----------------------------------------+------------------+------------------+
| Ahwatukee | 124 | Cupz N' Crepes | null | 98 |
| Ahwatukee | 98 | My Wine Cellar | 124 | 12 |
| Ahwatukee | 12 | Kathy's Alterations | 98 | 7 |
| Ahwatukee | 7 | McDonald's | 12 | 5 |
| Ahwatukee | 5 | U-Haul | 7 | 4 |
| Ahwatukee | 4 | Hi-Health | 5 | 4 |
| Ahwatukee | 4 | Healthy and Clean Living Environments | 4 | 4 |
| Ahwatukee | 4 | Active Kids Pediatrics | 4 | null |
| Anthem | 117 | Roberto's Authentic Mexican Food | null | 74 |
| Anthem | 74 | Q to U BBQ | 117 | 64 |
| Anthem | 64 | Outlets At Anthem | 74 | 56 |
| Anthem | 56 | Dara Thai | 64 | 53 |
| Anthem | 53 | Cafe Provence | 56 | 50 |
| Anthem | 50 | Shanghai Club | 53 | 43 |
| Anthem | 43 | Two Brothers Kitchen | 50 | 32 |
+------------+---------------+----------------------------------------+------------------+------------------+
15 rows selected (0.518 seconds)