ROUTINE LOAD
description
例行导入(Routine Load)功能,支持用户提交一个常驻的导入任务,通过不断的从指定的数据源读取数据,将数据导入到 Doris 中。
目前仅支持通过无认证或者 SSL 认证方式,从 Kakfa 导入文本格式(CSV)的数据。
语法:
CREATE ROUTINE LOAD [db.]job_name ON tbl_name
[merge_type]
[load_properties]
[job_properties]
FROM data_source
[data_source_properties]
1. [db.]job_name
导入作业的名称,在同一个 database 内,相同名称只能有一个 job 在运行。
2. tbl_name
指定需要导入的表的名称。
3. merge_type
数据的合并类型,一共支持三种类型APPEND、DELETE、MERGE 其中,APPEND是默认值,表示这批数据全部需要追加到现有数据中,DELETE 表示删除与这批数据key相同的所有行,MERGE 语义 需要与delete on条件联合使用,表示满足delete 条件的数据按照DELETE 语义处理其余的按照APPEND 语义处理, 语法为[WITH MERGE|APPEND|DELETE]
4. load_properties
用于描述导入数据。语法:
[column_separator],
[columns_mapping],
[where_predicates],
[delete_on_predicates],
[source_sequence],
[partitions],
[preceding_predicates]
1. column_separator:
指定列分隔符,如:
COLUMNS TERMINATED BY ","
默认为:\t
2. columns_mapping:
指定源数据中列的映射关系,以及定义衍生列的生成方式。
1. 映射列:
按顺序指定,源数据中各个列,对应目的表中的哪些列。对于希望跳过的列,可以指定一个不存在的列名。
假设目的表有三列 k1, k2, v1。源数据有4列,其中第1、2、4列分别对应 k2, k1, v1。则书写如下:
COLUMNS (k2, k1, xxx, v1)
其中 xxx 为不存在的一列,用于跳过源数据中的第三列。
2. 衍生列:
以 col_name = expr 的形式表示的列,我们称为衍生列。即支持通过 expr 计算得出目的表中对应列的值。
衍生列通常排列在映射列之后,虽然这不是强制的规定,但是 Doris 总是先解析映射列,再解析衍生列。
接上一个示例,假设目的表还有第4列 v2,v2 由 k1 和 k2 的和产生。则可以书写如下:
COLUMNS (k2, k1, xxx, v1, v2 = k1 + k2);
3. where_predicates
用于指定过滤条件,以过滤掉不需要的列。过滤列可以是映射列或衍生列。
例如我们只希望导入 k1 大于 100 并且 k2 等于 1000 的列,则书写如下:
WHERE k1 > 100 and k2 = 1000
4. partitions
指定导入目的表的哪些 partition 中。如果不指定,则会自动导入到对应的 partition 中。
示例:
PARTITION(p1, p2, p3)
5. delete_on_predicates
表示删除条件,仅在 merge type 为MERGE 时有意义,语法与where 相同
6. source_sequence:
只适用于UNIQUE_KEYS,相同key列下,保证value列按照source_sequence列进行REPLACE, source_sequence可以是数据源中的列,也可以是表结构中的一列。
7. preceding_predicates
PRECEDING FILTER predicate
用于过滤原始数据。原始数据是未经列映射、转换的数据。用户可以在对转换前的数据前进行一次过滤,选取期望的数据,再进行转换。
5. job_properties
用于指定例行导入作业的通用参数。
语法:
PROPERTIES (
"key1" = "val1",
"key2" = "val2"
)
目前我们支持以下参数:
1. desired_concurrent_number
期望的并发度。一个例行导入作业会被分成多个子任务执行。这个参数指定一个作业最多有多少任务可以同时执行。必须大于0。默认为3。
这个并发度并不是实际的并发度,实际的并发度,会通过集群的节点数、负载情况,以及数据源的情况综合考虑。
例:
"desired_concurrent_number" = "3"
2. max_batch_interval/max_batch_rows/max_batch_size
这三个参数分别表示:
1)每个子任务最大执行时间,单位是秒。范围为 5 到 60。默认为10。
2)每个子任务最多读取的行数。必须大于等于200000。默认是200000。
3)每个子任务最多读取的字节数。单位是字节,范围是 100MB 到 1GB。默认是 100MB。
这三个参数,用于控制一个子任务的执行时间和处理量。当任意一个达到阈值,则任务结束。
例:
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200"
3. max_error_number
采样窗口内,允许的最大错误行数。必须大于等于0。默认是 0,即不允许有错误行。
采样窗口为 max_batch_rows * 10。即如果在采样窗口内,错误行数大于 max_error_number,则会导致例行作业被暂停,需要人工介入检查数据质量问题。
被 where 条件过滤掉的行不算错误行。
4. strict_mode
是否开启严格模式,默认为关闭。如果开启后,非空原始数据的列类型变换如果结果为 NULL,则会被过滤。指定方式为 "strict_mode" = "true"
5. timezone
指定导入作业所使用的时区。默认为使用 Session 的 timezone 参数。该参数会影响所有导入涉及的和时区有关的函数结果。
6. format
指定导入数据格式,默认是csv,支持json格式。
7. jsonpaths
jsonpaths: 导入json方式分为:简单模式和匹配模式。如果设置了jsonpath则为匹配模式导入,否则为简单模式导入,具体可参考示例。
8. strip_outer_array
布尔类型,为true表示json数据以数组对象开始且将数组对象中进行展平,默认值是false。
9. json_root
json_root为合法的jsonpath字符串,用于指定json document的根节点,默认值为""。
6. data_source
数据源的类型。当前支持:
KAFKA
7. data_source_properties
指定数据源相关的信息。
语法:
(
"key1" = "val1",
"key2" = "val2"
)
1. KAFKA 数据源
1. kafka_broker_list
Kafka 的 broker 连接信息。格式为 ip:host。多个broker之间以逗号分隔。
示例:
"kafka_broker_list" = "broker1:9092,broker2:9092"
2. kafka_topic
指定要订阅的 Kafka 的 topic。
示例:
"kafka_topic" = "my_topic"
3. kafka_partitions/kafka_offsets
指定需要订阅的 kafka partition,以及对应的每个 partition 的起始 offset。
offset 可以指定从大于等于 0 的具体 offset,或者:
1) OFFSET_BEGINNING: 从有数据的位置开始订阅。
2) OFFSET_END: 从末尾开始订阅。
如果没有指定,则默认从 OFFSET_END 开始订阅 topic 下的所有 partition。
示例:
"kafka_partitions" = "0,1,2,3",
"kafka_offsets" = "101,0,OFFSET_BEGINNING,OFFSET_END"
4. property
指定自定义kafka参数。
功能等同于kafka shell中 "--property" 参数。
当参数的 value 为一个文件时,需要在 value 前加上关键词:"FILE:"。
关于如何创建文件,请参阅 "HELP CREATE FILE;"
更多支持的自定义参数,请参阅 librdkafka 的官方 CONFIGURATION 文档中,client 端的配置项。
示例:
"property.client.id" = "12345",
"property.ssl.ca.location" = "FILE:ca.pem"
1.使用 SSL 连接 Kafka 时,需要指定以下参数:
"property.security.protocol" = "ssl",
"property.ssl.ca.location" = "FILE:ca.pem",
"property.ssl.certificate.location" = "FILE:client.pem",
"property.ssl.key.location" = "FILE:client.key",
"property.ssl.key.password" = "abcdefg"
其中:
"property.security.protocol" 和 "property.ssl.ca.location" 为必须,用于指明连接方式为 SSL,以及 CA 证书的位置。
如果 Kafka server 端开启了 client 认证,则还需设置:
"property.ssl.certificate.location"
"property.ssl.key.location"
"property.ssl.key.password"
分别用于指定 client 的 public key,private key 以及 private key 的密码。
2.指定kafka partition的默认起始offset
如果没有指定kafka_partitions/kafka_offsets,默认消费所有分区,此时可以指定kafka_default_offsets指定起始 offset。默认为 OFFSET_END,即从末尾开始订阅。
值为
1) OFFSET_BEGINNING: 从有数据的位置开始订阅。
2) OFFSET_END: 从末尾开始订阅。
示例:
"property.kafka_default_offsets" = "OFFSET_BEGINNING"
8. 导入数据格式样例
整型类(TINYINT/SMALLINT/INT/BIGINT/LARGEINT):1, 1000, 1234
浮点类(FLOAT/DOUBLE/DECIMAL):1.1, 0.23, .356
日期类(DATE/DATETIME):2017-10-03, 2017-06-13 12:34:03。
字符串类(CHAR/VARCHAR)(无引号):I am a student, a
NULL值:\N
example
1. 为 example_db 的 example_tbl 创建一个名为 test1 的 Kafka 例行导入任务。指定列分隔符和 group.id 和 client.id,并且自动默认消费所有分区,且从有数据的位置(OFFSET_BEGINNING)开始订阅
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
COLUMNS TERMINATED BY ",",
COLUMNS(k1, k2, k3, v1, v2, v3 = k1 * 100)
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"property.group.id" = "xxx",
"property.client.id" = "xxx",
"property.kafka_default_offsets" = "OFFSET_BEGINNING"
);
2. 为 example_db 的 example_tbl 创建一个名为 test1 的 Kafka 例行导入任务。导入任务为严格模式。
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
COLUMNS(k1, k2, k3, v1, v2, v3 = k1 * 100),
WHERE k1 > 100 and k2 like "%doris%"
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2,3",
"kafka_offsets" = "101,0,0,200"
);
3. 通过 SSL 认证方式,从 Kafka 集群导入数据。同时设置 client.id 参数。导入任务为非严格模式,时区为 Africa/Abidjan
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
COLUMNS(k1, k2, k3, v1, v2, v3 = k1 * 100),
WHERE k1 > 100 and k2 like "%doris%"
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false",
"timezone" = "Africa/Abidjan"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"property.security.protocol" = "ssl",
"property.ssl.ca.location" = "FILE:ca.pem",
"property.ssl.certificate.location" = "FILE:client.pem",
"property.ssl.key.location" = "FILE:client.key",
"property.ssl.key.password" = "abcdefg",
"property.client.id" = "my_client_id"
);
4. 简单模式导入json
CREATE ROUTINE LOAD example_db.test_json_label_1 ON table1
COLUMNS(category,price,author)
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false",
"format" = "json"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2",
"kafka_offsets" = "0,0,0"
);
支持两种json数据格式:
1){"category":"a9jadhx","author":"test","price":895}
2)[
{"category":"a9jadhx","author":"test","price":895},
{"category":"axdfa1","author":"EvelynWaugh","price":1299}
]
5. 精准导入json数据格式
CREATE TABLE `example_tbl` (
`category` varchar(24) NULL COMMENT "",
`author` varchar(24) NULL COMMENT "",
`timestamp` bigint(20) NULL COMMENT "",
`dt` int(11) NULL COMMENT "",
`price` double REPLACE
) ENGINE=OLAP
AGGREGATE KEY(`category`,`author`,`timestamp`,`dt`)
COMMENT "OLAP"
PARTITION BY RANGE(`dt`)
(PARTITION p0 VALUES [("-2147483648"), ("20200509")),
PARTITION p20200509 VALUES [("20200509"), ("20200510")),
PARTITION p20200510 VALUES [("20200510"), ("20200511")),
PARTITION p20200511 VALUES [("20200511"), ("20200512")))
DISTRIBUTED BY HASH(`category`,`author`,`timestamp`) BUCKETS 4
PROPERTIES (
"storage_type" = "COLUMN",
"replication_num" = "1"
);
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
COLUMNS(category, author, price, timestamp, dt=from_unixtime(timestamp, '%Y%m%d'))
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false",
"format" = "json",
"jsonpaths" = "[\"$.category\",\"$.author\",\"$.price\",\"$.timestamp\"]",
"strip_outer_array" = "true"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2",
"kafka_offsets" = "0,0,0"
);
json数据格式: [ {“category”:”11”,”title”:”SayingsoftheCentury”,”price”:895,”timestamp”:1589191587}, {“category”:”22”,”author”:”2avc”,”price”:895,”timestamp”:1589191487}, {“category”:”33”,”author”:”3avc”,”title”:”SayingsoftheCentury”,”timestamp”:1589191387} ] 说明: 1)如果json数据是以数组开始,并且数组中每个对象是一条记录,则需要将strip_outer_array设置成true,表示展平数组。 2)如果json数据是以数组开始,并且数组中每个对象是一条记录,在设置jsonpath时,我们的ROOT节点实际上是数组中对象。
6. 用户指定根节点json_root
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
COLUMNS(category, author, price, timestamp, dt=from_unixtime(timestamp, '%Y%m%d'))
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false",
"format" = "json",
"jsonpaths" = "[\"$.category\",\"$.author\",\"$.price\",\"$.timestamp\"]",
"strip_outer_array" = "true",
"json_root" = "$.RECORDS"
)
FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2",
"kafka_offsets" = "0,0,0"
);
json数据格式: { “RECORDS”:[ {“category”:”11”,”title”:”SayingsoftheCentury”,”price”:895,”timestamp”:1589191587}, {“category”:”22”,”author”:”2avc”,”price”:895,”timestamp”:1589191487}, {“category”:”33”,”author”:”3avc”,”title”:”SayingsoftheCentury”,”timestamp”:1589191387} ] }
7. 为 example_db 的 example_tbl 创建一个名为 test1 的 Kafka 例行导入任务。并且删除与v3 >100 行相匹配的key列的行
CREATE ROUTINE LOAD example_db.test1 ON example_tbl
WITH MERGE
COLUMNS(k1, k2, k3, v1, v2, v3),
WHERE k1 > 100 and k2 like "%doris%",
DELETE ON v3 >100
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "20",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200",
"strict_mode" = "false"
)
FROM KAFKA
8. 导入数据到含有sequence列的UNIQUE_KEYS表中
CREATE ROUTINE LOAD example_db.test_job ON example_tbl
COLUMNS TERMINATED BY ",",
COLUMNS(k1,k2,source_sequence,v1,v2),
ORDER BY source_sequence
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "30",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200"
) FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2,3",
"kafka_offsets" = "101,0,0,200"
);
8. 过滤原始数据
CREATE ROUTINE LOAD example_db.test_job ON example_tbl
COLUMNS TERMINATED BY ",",
COLUMNS(k1,k2,source_sequence,v1,v2),
PRECEDING FILTER k1 > 2
PROPERTIES
(
"desired_concurrent_number"="3",
"max_batch_interval" = "30",
"max_batch_rows" = "300000",
"max_batch_size" = "209715200"
) FROM KAFKA
(
"kafka_broker_list" = "broker1:9092,broker2:9092,broker3:9092",
"kafka_topic" = "my_topic",
"kafka_partitions" = "0,1,2,3",
"kafka_offsets" = "101,0,0,200"
);
keyword
CREATE,ROUTINE,LOAD