CREATE TABLE

description

该语句用于创建 table。 语法:

  1. CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [database.]table_name
  2. (column_definition1[, column_definition2, ...]
  3. [, index_definition1[, ndex_definition12,]])
  4. [ENGINE = [olap|mysql|broker|hive]]
  5. [key_desc]
  6. [COMMENT "table comment"];
  7. [partition_desc]
  8. [distribution_desc]
  9. [rollup_index]
  10. [PROPERTIES ("key"="value", ...)]
  11. [BROKER PROPERTIES ("key"="value", ...)]
  1. column_definition 语法: col_name col_type [agg_type] [NULL | NOT NULL] [DEFAULT "default_value"]

    说明: col_name:列名称 col_type:列类型

    1. TINYINT1字节)
    2. 范围:-2^7 + 1 ~ 2^7 - 1
    3. SMALLINT2字节)
    4. 范围:-2^15 + 1 ~ 2^15 - 1
    5. INT4字节)
    6. 范围:-2^31 + 1 ~ 2^31 - 1
    7. BIGINT8字节)
    8. 范围:-2^63 + 1 ~ 2^63 - 1
    9. LARGEINT16字节)
    10. 范围:-2^127 + 1 ~ 2^127 - 1
    11. FLOAT4字节)
    12. 支持科学计数法
    13. DOUBLE8字节)
    14. 支持科学计数法
    15. DECIMAL[(precision, scale)] (16字节)
    16. 保证精度的小数类型。默认是 DECIMAL(10, 0)
    17. precision: 1 ~ 27
    18. scale: 0 ~ 9
    19. 其中整数部分为 1 ~ 18
    20. 不支持科学计数法
    21. DATE3字节)
    22. 范围:0000-01-01 ~ 9999-12-31
    23. DATETIME8字节)
    24. 范围:0000-01-01 00:00:00 ~ 9999-12-31 23:59:59
    25. CHAR[(length)]
    26. 定长字符串。长度范围:1 ~ 255。默认为1
    27. VARCHAR[(length)]
    28. 变长字符串。长度范围:1 ~ 65533
    29. HLL (1~16385个字节)
    30. hll列类型,不需要指定长度和默认值、长度根据数据的聚合
    31. 程度系统内控制,并且HLL列只能通过配套的hll_union_aggHll_cardinalityhll_hash进行查询或使用
    32. BITMAP
    33. bitmap列类型,不需要指定长度和默认值。表示整型的集合,元素最大支持到2^64 - 1

    agg_type:聚合类型,如果不指定,则该列为 key 列。否则,该列为 value 列 * SUM、MAX、MIN、REPLACE * HLL_UNION(仅用于HLL列,为HLL独有的聚合方式)、 * BITMAP_UNION(仅用于 BITMAP 列,为 BITMAP 独有的聚合方式)、 * REPLACE_IF_NOT_NULL:这个聚合类型的含义是当且仅当新导入数据是非NULL值时会发生替换行为,如果新导入的数据是NULL,那么Doris仍然会保留原值。注意:如果用在建表时REPLACE_IF_NOT_NULL列指定了NOT NULL,那么Doris仍然会将其转化NULL,不会向用户报错。用户可以借助这个类型完成部分列导入的功能。 * 该类型只对聚合模型(key_desc的type为AGGREGATE KEY)有用,其它模型不需要指这个。

    是否允许为NULL: 默认允许为 NULL。NULL 值在导入数据中用 \N 来表示

    注意: BITMAP_UNION聚合类型列在导入时的原始数据类型必须是TINYINT,SMALLINT,INT,BIGINT。

  2. index_definition 语法: INDEX index_name (col_name[, col_name, ...]) [USING BITMAP] COMMENT 'xxxxxx' 说明: index_name:索引名称 col_name:列名 注意: 当前仅支持BITMAP索引, BITMAP索引仅支持应用于单列

  3. ENGINE 类型 默认为 olap。可选 mysql, broker, hive

    1. 如果是 mysql,则需要在 properties 提供以下信息:
  1. PROPERTIES (
  2. "host" = "mysql_server_host",
  3. "port" = "mysql_server_port",
  4. "user" = "your_user_name",
  5. "password" = "your_password",
  6. "database" = "database_name",
  7. "table" = "table_name"
  8. )
  1. 注意:
  2. "table" 条目中的 "table_name" mysql 中的真实表名。
  3. CREATE TABLE 语句中的 table_name 是该 mysql 表在 Doris 中的名字,可以不同。
  4. Doris 创建 mysql 表的目的是可以通过 Doris 访问 mysql 数据库。
  5. Doris 本身并不维护、存储任何 mysql 数据。
  6. 2) 如果是 broker,表示表的访问需要通过指定的broker, 需要在 properties 提供以下信息:
  7. ```
  8. PROPERTIES (
  9. "broker_name" = "broker_name",
  10. "path" = "file_path1[,file_path2]",
  11. "column_separator" = "value_separator"
  12. "line_delimiter" = "value_delimiter"
  13. )
  14. ```
  15. 另外还需要提供Broker需要的Property信息,通过BROKER PROPERTIES来传递,例如HDFS需要传入
  16. ```
  17. BROKER PROPERTIES(
  18. "username" = "name",
  19. "password" = "password"
  20. )
  21. ```
  22. 这个根据不同的Broker类型,需要传入的内容也不相同
  23. 注意:
  24. "path" 中如果有多个文件,用逗号[,]分割。如果文件名中包含逗号,那么使用 %2c 来替代。如果文件名中包含 %,使用 %25 代替
  25. 现在文件内容格式支持CSV,支持GZBZ2LZ4LZO(LZOP) 压缩格式。
  26. 3) 如果是 hive,则需要在 properties 提供以下信息:
  27. ```
  28. PROPERTIES (
  29. "database" = "hive_db_name",
  30. "table" = "hive_table_name",
  31. "hive.metastore.uris" = "thrift://127.0.0.1:9083"
  32. )
  33. ```
  34. 其中 database hive 表对应的库名字,table hive 表的名字,hive.metastore.uris hive metastore 服务地址。
  35. 注意:目前hive外部表仅用于Spark Load使用,不支持查询。
  1. key_desc 语法: key_type(k1[,k2 ...]) 说明: 数据按照指定的key列进行排序,且根据不同的key_type具有不同特性。 key_type支持以下类型: AGGREGATE KEY:key列相同的记录,value列按照指定的聚合类型进行聚合, 适合报表、多维分析等业务场景。 UNIQUE KEY:key列相同的记录,value列按导入顺序进行覆盖, 适合按key列进行增删改查的点查询业务。 DUPLICATE KEY:key列相同的记录,同时存在于Doris中, 适合存储明细数据或者数据无聚合特性的业务场景。 默认为DUPLICATE KEY,key列为列定义中前36个字节, 如果前36个字节的列数小于3,将使用前三列。 注意: 除AGGREGATE KEY外,其他key_type在建表时,value列不需要指定聚合类型。

  2. partition_desc partition描述有两种使用方式

    1. LESS THAN 语法:

      1. PARTITION BY RANGE (k1, k2, ...)
      2. (
      3. PARTITION partition_name1 VALUES LESS THAN MAXVALUE|("value1", "value2", ...),
      4. PARTITION partition_name2 VALUES LESS THAN MAXVALUE|("value1", "value2", ...)
      5. ...
      6. )

      说明: 使用指定的 key 列和指定的数值范围进行分区。 1) 分区名称仅支持字母开头,字母、数字和下划线组成 2) 目前仅支持以下类型的列作为 Range 分区列,且只能指定一个分区列 TINYINT, SMALLINT, INT, BIGINT, LARGEINT, DATE, DATETIME 3) 分区为左闭右开区间,首个分区的左边界为做最小值 4) NULL 值只会存放在包含最小值的分区中。当包含最小值的分区被删除后,NULL 值将无法导入。 5) 可以指定一列或多列作为分区列。如果分区值缺省,则会默认填充最小值。

      注意: 1) 分区一般用于时间维度的数据管理 2) 有数据回溯需求的,可以考虑首个分区为空分区,以便后续增加分区

    2)Fixed Range 语法: PARTITION BY RANGE (k1, k2, k3, ...) ( PARTITION partition_name1 VALUES [("k1-lower1", "k2-lower1", "k3-lower1",...), ("k1-upper1", "k2-upper1", "k3-upper1", ...)), PARTITION partition_name2 VALUES [("k1-lower1-2", "k2-lower1-2", ...), ("k1-upper1-2", MAXVALUE, )) "k3-upper1-2", ... ) 说明: 1)Fixed Range比LESS THAN相对灵活些,左右区间完全由用户自己确定 2)其他与LESS THAN保持同步

  3. distribution_desc 1) Hash 分桶 语法: DISTRIBUTED BY HASH (k1[,k2 ...]) [BUCKETS num] 说明: 使用指定的 key 列进行哈希分桶。默认分区数为10

    建议:建议使用Hash分桶方式

  4. PROPERTIES

    1. 如果 ENGINE 类型为 olap 可以在 properties 设置该表数据的初始存储介质、存储到期时间和副本数。
    1. PROPERTIES (
    2. "storage_medium" = "[SSD|HDD]",
    3. ["storage_cooldown_time" = "yyyy-MM-dd HH:mm:ss"],
    4. ["replication_num" = "3"]
    5. )
    1. storage_medium 用于指定该分区的初始存储介质,可选择 SSD HDD。默认初始存储介质可通过fe的配置文件 `fe.conf` 中指定 `default_storage_medium=xxx`,如果没有指定,则默认为 HDD
    2. 注意:当FE配置项 `enable_strict_storage_medium_check` `True` 时,若集群中没有设置对应的存储介质时,建表语句会报错 `Failed to find enough host in all backends with storage medium is SSD|HDD`.
    3. storage_cooldown_time 当设置存储介质为 SSD 时,指定该分区在 SSD 上的存储到期时间。
    4. 默认存放 30 天。
    5. 格式为:"yyyy-MM-dd HH:mm:ss"
    6. replication_num: 指定分区的副本数。默认为 3
    7. 当表为单分区表时,这些属性为表的属性。
    8. 当表为两级分区时,这些属性为附属于每一个分区。
    9. 如果希望不同分区有不同属性。可以通过 ADD PARTITION MODIFY PARTITION 进行操作
    1. 如果 Engine 类型为 olap, 可以指定某列使用 bloom filter 索引 bloom filter 索引仅适用于查询条件为 in 和 equal 的情况,该列的值越分散效果越好 目前只支持以下情况的列:除了 TINYINT FLOAT DOUBLE 类型以外的 key 列及聚合方法为 REPLACE 的 value 列
  1. PROPERTIES (
  2. "bloom_filter_columns"="k1,k2,k3"
  3. )
  1. 3) 如果希望使用 Colocate Join 特性,需要在 properties 中指定
  1. PROPERTIES (
  2. "colocate_with"="table1"
  3. )
  1. 4) 如果希望使用动态分区特性,需要在properties 中指定
  1. PROPERTIES (
  2. "dynamic_partition.enable" = "true|false",
  3. "dynamic_partition.time_unit" = "HOUR|DAY|WEEK|MONTH",
  4. "dynamic_partition.start" = "${integer_value}",
  5. "dynamic_partitoin.end" = "${integer_value}",
  6. "dynamic_partition.prefix" = "${string_value}",
  7. "dynamic_partition.buckets" = "${integer_value}
  1. dynamic_partition.enable: 用于指定表级别的动态分区功能是否开启。默认为 true
  2. dynamic_partition.time_unit: 用于指定动态添加分区的时间单位,可选择为HOUR(小时),DAY(天),WEEK(周),MONTH(月)。
  3. 注意:以小时为单位的分区列,数据类型不能为 DATE
  4. dynamic_partition.start: 用于指定向前删除多少个分区。值必须小于0。默认为 Integer.MIN_VALUE
  5. dynamic_partition.end: 用于指定提前创建的分区数量。值必须大于0
  6. dynamic_partition.prefix: 用于指定创建的分区名前缀,例如分区名前缀为p,则自动创建分区名为p20200108
  7. dynamic_partition.buckets: 用于指定自动创建的分区分桶数量
  8. 5) 建表时可以批量创建多个 Rollup
  9. 语法:
  10. ```
  11. ROLLUP (rollup_name (column_name1, column_name2, ...)
  12. [FROM from_index_name]
  13. [PROPERTIES ("key"="value", ...)],...)
  14. ```
  15. 6) 如果希望使用 内存表 特性,需要在 properties 中指定
  1. PROPERTIES (
  2. "in_memory"="true"
  3. )
  1. in_memory 属性为 true 时,Doris会尽可能将该表的数据和索引CacheBE 内存中
  2. 7) 创建UNIQUE_KEYS表时,可以指定一个sequence列,当KEY列相同时,将按照sequence列进行REPLACE(较大值替换较小值,否则无法替换)
  1. PROPERTIES (
  2. "function_column.sequence_type" = 'Date',
  3. );
  1. sequence_type用来指定sequence列的类型,可以为整型和时间类型

example

  1. 创建一个 olap 表,使用 HASH 分桶,使用列存,相同key的记录进行聚合

    1. CREATE TABLE example_db.table_hash
    2. (
    3. k1 TINYINT,
    4. k2 DECIMAL(10, 2) DEFAULT "10.5",
    5. v1 CHAR(10) REPLACE,
    6. v2 INT SUM
    7. )
    8. ENGINE=olap
    9. AGGREGATE KEY(k1, k2)
    10. COMMENT "my first doris table"
    11. DISTRIBUTED BY HASH(k1) BUCKETS 32
    12. PROPERTIES ("storage_type"="column");
  2. 创建一个 olap 表,使用 Hash 分桶,使用列存,相同key的记录进行覆盖, 设置初始存储介质和冷却时间

    1. CREATE TABLE example_db.table_hash
    2. (
    3. k1 BIGINT,
    4. k2 LARGEINT,
    5. v1 VARCHAR(2048) REPLACE,
    6. v2 SMALLINT SUM DEFAULT "10"
    7. )
    8. ENGINE=olap
    9. UNIQUE KEY(k1, k2)
    10. DISTRIBUTED BY HASH (k1, k2) BUCKETS 32
    11. PROPERTIES(
    12. "storage_type"="column"
    13. "storage_medium" = "SSD",
    14. "storage_cooldown_time" = "2015-06-04 00:00:00"
    15. );
  3. 创建一个 olap 表,使用 Range 分区,使用Hash分桶,默认使用列存, 相同key的记录同时存在,设置初始存储介质和冷却时间

    1)LESS THAN

    1. CREATE TABLE example_db.table_range
    2. (
    3. k1 DATE,
    4. k2 INT,
    5. k3 SMALLINT,
    6. v1 VARCHAR(2048),
    7. v2 DATETIME DEFAULT "2014-02-04 15:36:00"
    8. )
    9. ENGINE=olap
    10. DUPLICATE KEY(k1, k2, k3)
    11. PARTITION BY RANGE (k1)
    12. (
    13. PARTITION p1 VALUES LESS THAN ("2014-01-01"),
    14. PARTITION p2 VALUES LESS THAN ("2014-06-01"),
    15. PARTITION p3 VALUES LESS THAN ("2014-12-01")
    16. )
    17. DISTRIBUTED BY HASH(k2) BUCKETS 32
    18. PROPERTIES(
    19. "storage_medium" = "SSD", "storage_cooldown_time" = "2015-06-04 00:00:00"
    20. );

    说明: 这个语句会将数据划分成如下3个分区:

    1. ( { MIN }, {"2014-01-01"} )
    2. [ {"2014-01-01"}, {"2014-06-01"} )
    3. [ {"2014-06-01"}, {"2014-12-01"} )

    不在这些分区范围内的数据将视为非法数据被过滤

    1. Fixed Range
    1. CREATE TABLE table_range
    2. (
    3. k1 DATE,
    4. k2 INT,
    5. k3 SMALLINT,
    6. v1 VARCHAR(2048),
    7. v2 DATETIME DEFAULT "2014-02-04 15:36:00"
    8. )
    9. ENGINE=olap
    10. DUPLICATE KEY(k1, k2, k3)
    11. PARTITION BY RANGE (k1, k2, k3)
    12. (
    13. PARTITION p1 VALUES [("2014-01-01", "10", "200"), ("2014-01-01", "20", "300")),
    14. PARTITION p2 VALUES [("2014-06-01", "100", "200"), ("2014-07-01", "100", "300"))
    15. )
    16. DISTRIBUTED BY HASH(k2) BUCKETS 32
    17. PROPERTIES(
    18. "storage_medium" = "SSD"
    19. );
  4. 创建一个 mysql 表

    4.1 直接通过外表信息创建mysql表

  1. CREATE EXTERNAL TABLE example_db.table_mysql
  2. (
  3. k1 DATE,
  4. k2 INT,
  5. k3 SMALLINT,
  6. k4 VARCHAR(2048),
  7. k5 DATETIME
  8. )
  9. ENGINE=mysql
  10. PROPERTIES
  11. (
  12. "host" = "127.0.0.1",
  13. "port" = "8239",
  14. "user" = "mysql_user",
  15. "password" = "mysql_passwd",
  16. "database" = "mysql_db_test",
  17. "table" = "mysql_table_test"
  18. )

4.2 通过External Catalog Resource创建mysql表

  1. CREATE EXTERNAL RESOURCE "mysql_resource"
  2. PROPERTIES
  3. (
  4. "type" = "odbc_catalog",
  5. "user" = "mysql_user",
  6. "password" = "mysql_passwd",
  7. "host" = "127.0.0.1",
  8. "port" = "8239"
  9. );
  1. CREATE EXTERNAL TABLE example_db.table_mysql
  2. (
  3. k1 DATE,
  4. k2 INT,
  5. k3 SMALLINT,
  6. k4 VARCHAR(2048),
  7. k5 DATETIME
  8. )
  9. ENGINE=mysql
  10. PROPERTIES
  11. (
  12. "odbc_catalog_resource" = "mysql_resource",
  13. "database" = "mysql_db_test",
  14. "table" = "mysql_table_test"
  15. )
  1. 创建一个数据文件存储在HDFS上的 broker 外部表, 数据使用 “|” 分割,”\n” 换行
  1. CREATE EXTERNAL TABLE example_db.table_broker (
  2. k1 DATE,
  3. k2 INT,
  4. k3 SMALLINT,
  5. k4 VARCHAR(2048),
  6. k5 DATETIME
  7. )
  8. ENGINE=broker
  9. PROPERTIES (
  10. "broker_name" = "hdfs",
  11. "path" = "hdfs://hdfs_host:hdfs_port/data1,hdfs://hdfs_host:hdfs_port/data2,hdfs://hdfs_host:hdfs_port/data3%2c4",
  12. "column_separator" = "|",
  13. "line_delimiter" = "\n"
  14. )
  15. BROKER PROPERTIES (
  16. "username" = "hdfs_user",
  17. "password" = "hdfs_password"
  18. )
  1. 创建一张含有HLL列的表
  1. CREATE TABLE example_db.example_table
  2. (
  3. k1 TINYINT,
  4. k2 DECIMAL(10, 2) DEFAULT "10.5",
  5. v1 HLL HLL_UNION,
  6. v2 HLL HLL_UNION
  7. )
  8. ENGINE=olap
  9. AGGREGATE KEY(k1, k2)
  10. DISTRIBUTED BY HASH(k1) BUCKETS 32
  11. PROPERTIES ("storage_type"="column");
  1. 创建一张含有BITMAP_UNION聚合类型的表(v1和v2列的原始数据类型必须是TINYINT,SMALLINT,INT)
  1. CREATE TABLE example_db.example_table
  2. (
  3. k1 TINYINT,
  4. k2 DECIMAL(10, 2) DEFAULT "10.5",
  5. v1 BITMAP BITMAP_UNION,
  6. v2 BITMAP BITMAP_UNION
  7. )
  8. ENGINE=olap
  9. AGGREGATE KEY(k1, k2)
  10. DISTRIBUTED BY HASH(k1) BUCKETS 32
  11. PROPERTIES ("storage_type"="column");
  1. 创建两张支持Colocate Join的表t1 和t2
  1. CREATE TABLE `t1` (
  2. `id` int(11) COMMENT "",
  3. `value` varchar(8) COMMENT ""
  4. ) ENGINE=OLAP
  5. DUPLICATE KEY(`id`)
  6. DISTRIBUTED BY HASH(`id`) BUCKETS 10
  7. PROPERTIES (
  8. "colocate_with" = "t1"
  9. );
  10. CREATE TABLE `t2` (
  11. `id` int(11) COMMENT "",
  12. `value` varchar(8) COMMENT ""
  13. ) ENGINE=OLAP
  14. DUPLICATE KEY(`id`)
  15. DISTRIBUTED BY HASH(`id`) BUCKETS 10
  16. PROPERTIES (
  17. "colocate_with" = "t1"
  18. );
  1. 创建一个数据文件存储在BOS上的 broker 外部表
  1. CREATE EXTERNAL TABLE example_db.table_broker (
  2. k1 DATE
  3. )
  4. ENGINE=broker
  5. PROPERTIES (
  6. "broker_name" = "bos",
  7. "path" = "bos://my_bucket/input/file",
  8. )
  9. BROKER PROPERTIES (
  10. "bos_endpoint" = "http://bj.bcebos.com",
  11. "bos_accesskey" = "xxxxxxxxxxxxxxxxxxxxxxxxxx",
  12. "bos_secret_accesskey"="yyyyyyyyyyyyyyyyyyyy"
  13. )
  1. 创建一个带有bitmap 索引的表
  1. CREATE TABLE example_db.table_hash
  2. (
  3. k1 TINYINT,
  4. k2 DECIMAL(10, 2) DEFAULT "10.5",
  5. v1 CHAR(10) REPLACE,
  6. v2 INT SUM,
  7. INDEX k1_idx (k1) USING BITMAP COMMENT 'xxxxxx'
  8. )
  9. ENGINE=olap
  10. AGGREGATE KEY(k1, k2)
  11. COMMENT "my first doris table"
  12. DISTRIBUTED BY HASH(k1) BUCKETS 32
  13. PROPERTIES ("storage_type"="column");
  1. 创建一个动态分区表(需要在FE配置中开启动态分区功能),该表每天提前创建3天的分区,并删除3天前的分区。例如今天为2020-01-08,则会创建分区名为p20200108, p20200109, p20200110, p20200111的分区. 分区范围分别为:
  1. [types: [DATE]; keys: [2020-01-08]; types: [DATE]; keys: [2020-01-09]; )
  2. [types: [DATE]; keys: [2020-01-09]; types: [DATE]; keys: [2020-01-10]; )
  3. [types: [DATE]; keys: [2020-01-10]; types: [DATE]; keys: [2020-01-11]; )
  4. [types: [DATE]; keys: [2020-01-11]; types: [DATE]; keys: [2020-01-12]; )
  1. CREATE TABLE example_db.dynamic_partition
  2. (
  3. k1 DATE,
  4. k2 INT,
  5. k3 SMALLINT,
  6. v1 VARCHAR(2048),
  7. v2 DATETIME DEFAULT "2014-02-04 15:36:00"
  8. )
  9. ENGINE=olap
  10. DUPLICATE KEY(k1, k2, k3)
  11. PARTITION BY RANGE (k1)
  12. (
  13. PARTITION p1 VALUES LESS THAN ("2014-01-01"),
  14. PARTITION p2 VALUES LESS THAN ("2014-06-01"),
  15. PARTITION p3 VALUES LESS THAN ("2014-12-01")
  16. )
  17. DISTRIBUTED BY HASH(k2) BUCKETS 32
  18. PROPERTIES(
  19. "storage_medium" = "SSD",
  20. "dynamic_partition.time_unit" = "DAY",
  21. "dynamic_partition.start" = "-3",
  22. "dynamic_partition.end" = "3",
  23. "dynamic_partition.prefix" = "p",
  24. "dynamic_partition.buckets" = "32"
  25. );
  1. Create a table with rollup index
  1. CREATE TABLE example_db.rolup_index_table
  2. (
  3. event_day DATE,
  4. siteid INT DEFAULT '10',
  5. citycode SMALLINT,
  6. username VARCHAR(32) DEFAULT '',
  7. pv BIGINT SUM DEFAULT '0'
  8. )
  9. AGGREGATE KEY(event_day, siteid, citycode, username)
  10. DISTRIBUTED BY HASH(siteid) BUCKETS 10
  11. rollup (
  12. r1(event_day,siteid),
  13. r2(event_day,citycode),
  14. r3(event_day)
  15. )
  16. PROPERTIES("replication_num" = "3");
  17. 13. 创建一个内存表
  1. CREATE TABLE example_db.table_hash
  2. (
  3. k1 TINYINT,
  4. k2 DECIMAL(10, 2) DEFAULT "10.5",
  5. v1 CHAR(10) REPLACE,
  6. v2 INT SUM,
  7. INDEX k1_idx (k1) USING BITMAP COMMENT 'xxxxxx'
  8. )
  9. ENGINE=olap
  10. AGGREGATE KEY(k1, k2)
  11. COMMENT "my first doris table"
  12. DISTRIBUTED BY HASH(k1) BUCKETS 32
  13. PROPERTIES ("in_memory"="true");
  1. 14. 创建一个hive外部表
  1. CREATE TABLE example_db.table_hive
  2. (
  3. k1 TINYINT,
  4. k2 VARCHAR(50),
  5. v INT
  6. )
  7. ENGINE=hive
  8. PROPERTIES
  9. (
  10. "database" = "hive_db_name",
  11. "table" = "hive_table_name",
  12. "hive.metastore.uris" = "thrift://127.0.0.1:9083"
  13. );
  1. ## keyword
  1. CREATE,TABLE