Robust Regression
鲁棒回归模型(robust regression model)同样是对一个或多个自变量与一个因变量之间的关系进行建模,不同点在于其旨在克服传统参数和非参数方法的一些局限性,如普通最小二乘法的假设条件不成立时会产生误导性结果,而鲁棒回归则旨在不会受到基础数据生成过程违反假设的过度影响。
1. 算法介绍
鲁棒回归模型(robust regression model)是一种对异常值比较健壮的回归模型。给一个随机样本 ,i=1,\ldots,n), 常规的线性回归模型假设回归子和回归量 之间的关系是除了X的影响以外,还存在一个服从正态分布的误差项来捕获除了 之外任何对的影响,但如果误差项是由非正常测量误差或其他违反标准假设引起的,那么常规的线性回归模型的有效性会受到影响。鲁棒回归模型在这方面进行了改进,允许方差取决于自变量X,一个多变量鲁棒回归模型表示为以下的形式:
鲁棒回归模型使用Huber损失函数,其对残差进行分段,对不同段的残差使用不同的损失计算方式,目标函数如下所示:
)={\begin{cases}{\frac{1}{2}}\sum{{i=1}}^{n}{(y_i-f(x_i))^{2}}&{\text{for}}|y_i-f(x_i)|\leq\delta\\\delta\sum{{i=1}}^{n}(|y_i-f(x_i)|-{\frac{1}{2}})&{\text{otherwise.}}\end{cases}})
其中:=\alpha+\beta{x})为一组样本的预测。该方法结合了平方损失和绝对损失,避免了被特别大的异常值支配。
2. 分布式实现 on Angel
Angel MLLib提供了用Mini-Batch Gradient Descent优化方法求解的Robust Regression算法,其算法逻辑如下,其中)
其说明如下:
- Learning Rate在迭代过程中衰减:
其中, α为衰减系数, T为迭代次数
3. 运行 & 性能
输入格式
- ml.feature.index.range:特征向量的维度, 即特征index的范围:例如如果index范围为[0, 100000000], 则可以将该参数配置为100000000;这个参数也可以配置为-1,表示index 范围为[Integer.MIN_VALUE, Integer.MAX_VALUE] 或者[Long.MIN_VALUE, Long.MAX_VALUE]
- ml.model.size: 模型大小, 对于一些稀疏模型, 存在一些无效维度, 即所有样本要这一维度上的取值匀为0. ml.model.size = ml.feature.index.range - number of invalidate indices
- ml.data.type:支持”dense”、”libsvm”、”dummy”三种数据格式,具体参考:Angel数据格式
参数
算法参数
- ml.epoch.num:迭代次数
- ml.minibatch.size:每次迭代选择mini-batch的样本个数
- ml.data.validate.ratio:每次validation的样本比率,设为0时不做validation
- ml.learn.rate:初始学习速率
- ml.learn.decay:学习速率衰减系数
- ml.reg.l1:L1惩罚项系数
- ml.reg.l2:L2惩罚项系数
- ml.robustregression.loss.delta:残差分段点
输入输出参数
- ml.feature.index.range:特征向量的维度
- ml.data.type: 支持”dense”、”libsvm”两种数据格式
- angel.train.data.path:训练数据的输入路径
- angel.predict.data.path:预测数据的输入路径
- angel.save.model.path:训练完成后,模型的保存路径
- angel.predict.out.path:预测结果存储路径
- angel.log.path:log文件保存路径
资源参数
- angel.workergroup.number:Worker个数
- angel.worker.memory.mb:Worker申请内存大小
- angel.worker.task.number:每个Worker上的task的个数,默认为1
- angel.ps.number:PS个数
- angel.ps.memory.mb:PS申请内存大小
提交命令
*向Yarn集群提交RobustRegression算法训练任务:./bin/angel-submit \
--action.type=train \
--angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
--ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
--angel.train.data.path=$input_path \
--angel.save.model.path=$model_path \
--angel.log.path=$log_path \
--ml.data.is.classification=false \
--ml.model.is.classification=false \
--ml.robustregression.loss.delta=1.0 \
--ml.epoch.num=10 \
--ml.feature.index.range=$featureNum+1 \
--ml.data.validate.ratio=0.1 \
--ml.learn.rate=0.1 \
--ml.learn.decay=1 \
--ml.reg.l2=0.001 \
--ml.data.type=libsvm \
--ml.model.type=T_FLOAT_DENSE \
--ml.num.update.per.epoch=10 \
--ml.worker.thread.num=4 \
--angel.workergroup.number=2 \
--angel.worker.memory.mb=5000 \
--angel.worker.task.number=1 \
--angel.ps.number=2 \
--angel.ps.memory.mb=5000 \
--angel.job.name=robustReg_network \
--angel.output.path.deleteonexist=true
*向Yarn集群提交RobustRegression算法增量训练任务:
./bin/angel-submit \
--action.type=train \
--angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
--ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
--angel.train.data.path=$input_path \
--angel.load.model.path=$model_path \
--angel.save.model.path=$model_path \
--angel.log.path=$log_path \
--ml.data.is.classification=false \
--ml.model.is.classification=false \
--ml.robustregression.loss.delta=1.0 \
--ml.epoch.num=10 \
--ml.feature.index.range=$featureNum+1 \
--ml.data.validate.ratio=0.1 \
--ml.learn.rate=0.1 \
--ml.learn.decay=1 \
--ml.reg.l2=0.001 \
--ml.data.type=libsvm \
--ml.model.type=T_FLOAT_DENSE \
--ml.num.update.per.epoch=10 \
--ml.worker.thread.num=4 \
--angel.workergroup.number=2 \
--angel.worker.memory.mb=5000 \
--angel.worker.task.number=1 \
--angel.ps.number=2 \
--angel.ps.memory.mb=5000 \
--angel.job.name=robustReg_network \
--angel.output.path.deleteonexist=true
*向Yarn集群提交RobustRegression算法预测任务:
./bin/angel-submit \
--action.type=predict \
--angel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
--ml.model.class.name=com.tencent.angel.ml.regression.RobustRegression \
--angel.predict.data.path=$input_path \
--angel.load.model.path=$model_path \
--angel.predict.out.path=$predict_path \
--angel.log.path=$log_path \
--ml.feature.index.range=$featureNum+1 \
--ml.data.type=libsvm \
--ml.model.type=T_FLOAT_DENSE \
--ml.worker.thread.num=4 \
--angel.workergroup.number=2 \
--angel.worker.memory.mb=5000 \
--angel.worker.task.number=1 \
--angel.ps.number=2 \
--angel.ps.memory.mb=5000 \
--angel.job.name=robustReg_network \
--angel.output.path.deleteonexist=true
性能
- 数据:E2006-tfidf,1.5×10^5 特征,1.6×10^4 样本
- 资源:
- Angel:executor:2个,5G内存,1个task;ps:2个,5G内存
- 迭代100次时间:
- Angel:22 min