Description
Gradient Boosting(often abbreviated to GBDT or GBM) is a popular supervised learning model. It is the best off-the-shelf supervised learning model for a wide range of problems, especially problems with medium to large data size.
This implementation use histogram-based algorithm. See: “Mcrank: Learning to rank using multiple classification and gradient boosting”, Ping Li et al., NIPS 2007, for detail and experiments on histogram-based algorithm.
This implementation use layer-wise tree growing strategy, rather than leaf-wise tree growing strategy (like the one in “Lightgbm: A highly efficient gradient boosting decision tree”, Guolin Ke et al., NIPS 2017), because we found the former being faster in flink-based distributed computing environment.
This implementation use data-parallel algorithm. See: “A communication-efficient parallel algorithm for decision tree”, Qi Meng et al., NIPS 2016 for an introduction on data-parallel, feature-parallel, etc., algorithms to construct decision forests.
Parameters
Name | Description | Type | Required? | Default Value |
---|---|---|---|---|
learningRate | learning rate for gbdt training(default 0.3) | Double | 0.3 | |
minSumHessianPerLeaf | minimum sum hessian for each leaf | Double | 0.0 | |
numTrees | Number of decision trees. | Integer | 100 | |
minSamplesPerLeaf | Minimal number of sample in one leaf. | Integer | 100 | |
maxDepth | depth of the tree | Integer | 6 | |
subsamplingRatio | Ratio of the training samples used for learning each decision tree. | Double | 1.0 | |
featureSubsamplingRatio | Ratio of the features used in each tree, in range (0, 1]. | Double | 1.0 | |
groupCol | Name of a grouping column | String | null | |
maxBins | MAX number of bins for continuous feature | Integer | 128 | |
featureCols | Names of the feature columns used for training in the input table | String[] | ✓ | |
labelCol | Name of the label column in the input table | String | ✓ | |
categoricalCols | Names of the categorical columns used for training in the input table | String[] | ||
weightCol | Name of the column indicating weight | String | null | |
maxLeaves | max leaves of tree | Integer | 2147483647 | |
minSampleRatioPerChild | Minimal value of: (num of samples in child)/(num of samples in its parent). | Double | 0.0 | |
minInfoGain | minimum info gain when performing split | Double | 0.0 | |
predictionCol | Column name of prediction. | String | ✓ | |
predictionDetailCol | Column name of prediction result, it will include detailed info. | String | ||
reservedCols | Names of the columns to be retained in the output table | String[] | null |
Script Example
import numpy as np
import pandas as pd
from pyalink.alink import *
def exampleData():
return np.array([
[1.0, "A", 0, 0, 0],
[2.0, "B", 1, 1, 0],
[3.0, "C", 2, 2, 1],
[4.0, "D", 3, 3, 1]
])
def sourceFrame():
data = exampleData()
return pd.DataFrame({
"f0": data[:, 0],
"f1": data[:, 1],
"f2": data[:, 2],
"f3": data[:, 3],
"label": data[:, 4]
})
def batchSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='batch'
)
def streamSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='stream'
)
(
GbdtClassifier()
.setLearningRate(1.0)
.setNumTrees(3)
.setMinSamplesPerLeaf(1)
.setPredictionDetailCol('pred_detail')
.setPredictionCol('pred')
.setLabelCol('label')
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])
.fit(batchSource())
.transform(batchSource())
.print()
)
(
GbdtClassifier()
.setLearningRate(1.0)
.setNumTrees(3)
.setMinSamplesPerLeaf(1)
.setPredictionDetailCol('pred_detail')
.setPredictionCol('pred')
.setLabelCol('label')
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])
.fit(batchSource())
.transform(streamSource())
.print()
)
StreamOperator.execute()
Result
Batch prediction
f0 f1 f2 f3 label pred pred_detail
0 1.0 A 0 0 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}
1 2.0 B 1 1 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}
2 3.0 C 2 2 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}
3 4.0 D 3 3 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}
Stream Prediction
f0 f1 f2 f3 label pred pred_detail
0 2.0 B 1 1 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}
1 4.0 D 3 3 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}
2 1.0 A 0 0 0 0 {"0":0.9849144951094335,"1":0.015085504890566462}
3 3.0 C 2 2 1 1 {"0":0.01508550489056637,"1":0.9849144951094336}