Description
DocHashIDFVectorizer converts a document to a sparse vector based on the inverse document frequency of every word in the document. Different from DocCountVectorizer, it used the hash value of the word as index.
Parameters
Name | Description | Type | Required? | Default Value |
---|---|---|---|---|
selectedCol | Name of the selected column used for processing | String | ✓ | |
numFeatures | The number of features. It will be the length of the output vector. | Integer | 262144 | |
minDF | When the number of documents a word appears in is below minDF, the word will not be included in the dictionary. It could be an exact countor a fraction of the document number count. When minDF is within [0, 1), it’s used as a fraction. | Double | 1.0 | |
featureType | Feature type, support IDF/WORD_COUNT/TF_IDF/Binary/TF | String | “WORD_COUNT” | |
minTF | When the number word in this document in is below minTF, the word will be ignored. It could be an exact count or a fraction of the document token count. When minTF is within [0, 1), it’s used as a fraction. | Double | 1.0 | |
selectedCol | Name of the selected column used for processing | String | ✓ | |
outputCol | Name of the output column | String | null | |
reservedCols | Names of the columns to be retained in the output table | String[] | null |
Script Example
Code
import numpy as np
import pandas as pd
data = np.array([
[0, u'二手旧书:医学电磁成像'],
[1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'],
[2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'],
[3, u'二手中国糖尿病文献索引'],
[4, u'二手郁达夫文集( 国内版 )全十二册馆藏书']])
df = pd.DataFrame({"id": data[:, 0], "text": data[:, 1]})
inOp = BatchOperator.fromDataframe(df, schemaStr='id int, text string')
pipeline = (
Pipeline()
.add(Segment().setSelectedCol("text"))
.add(DocHashCountVectorizer().setSelectedCol("text"))
)
pipeline.fit(inOp).transform(inOp).collectToDataframe()
Results
Output Data
id text
0 0 $262144$10121:1.0 64444:1.0 119456:1.0 206232:...
1 1 $262144$0:6.0 37505:1.0 46743:1.0 93228:1.0 11...
2 2 $262144$40170:1.0 70777:1.0 96509:1.0 126159:1...
3 3 $262144$206232:1.0 214785:1.0 251090:1.0 25565...
4 4 $262144$0:4.0 87711:1.0 138080:1.0 162140:1.0 ...