Best Time to Buy and Sell Stock IV
描述
Say you have an array for which the i-th element is the price of a given stock on day i
.
Design an algorithm to find the maximum profit. You may complete at most k
transactions.
Note:You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
分析
设两个状态,global[i][j]
表示i天前最多可以进行j次交易的最大利润,local[i][j]
表示i天前最多可以进行j次交易,且在第i天进行了第j次交易的最大利润。状态转移方程如下:
local[i][j] = max(global[i-1][j-1] + max(diff,0), local[i-1][j]+diff)
global[i][j] = max(local[i][j], global[i-1][j])
关于global
的状态转移方程比较简单,不断地和已经计算出的local进行比较,把大的保存在global中。
关于local
的状态转移方程,取下面二者中较大的一个:
- 全局前i-1天进行了j-1次交易,然后然后加上今天的交易产生的利润(如果赚钱就交易,不赚钱就不交易,什么也不发生,利润是0)
- 局部前i-1天进行了j次交易,然后加上今天的差价(local[i-1][j]是第i-1天卖出的交易,它加上diff后变成第i天卖出,并不会增加交易次数。无论diff是正还是负都要加上,否则就不满足local[i][j]必须在最后一天卖出的条件了)
注意,当k
大于数组的大小时,上述算法将变得低效,此时可以改为不限交易次数的方式解决,即等价于 "Best Time to Buy and Sell Stock II"。
解法1
// Best Time to Buy and Sell Stock IV
// Time Complexity: O(nk), Space Complexity: O(nk)
public class Solution {
public int maxProfit(final int k, final int[] prices) {
if (prices.length < 2 || k < 1) return 0;
if (k >= prices.length) return maxProfit(prices);
final int[][] local = new int[prices.length][k + 1];
final int[][] global = new int[prices.length][k + 1];
for (int i = 1; i < prices.length; i++) {
final int diff = prices[i] - prices[i - 1];
for (int j = 1; j < k+1; j++) {
local[i][j] = Math.max(
global[i - 1][j - 1] + Math.max(diff, 0),
local[i - 1][j] + diff);
global[i][j] = Math.max(global[i - 1][j], local[i][j]);
}
}
return global[prices.length - 1][k];
}
// Best Time to Buy and Sell Stock II
public static int maxProfit(final int[] prices) {
int sum = 0;
for (int i = 1; i < prices.length; i++) {
int diff = prices[i] - prices[i - 1];
if (diff > 0) sum += diff;
}
return sum;
}
}