The Apache ActiveMQ Artemis Examples repository contains over 90 examples demonstrating many of the client and broker features.

The examples can be found at: https://github.com/apache/activemq-artemis-examples

The individual examples are available under the examples directory, and are grouped within the following sub tree:

  • features - Examples containing broker specific features.

    • clustered - examples showing load balancing and distribution capabilities.

    • ha - examples showing failover and reconnection capabilities.

    • perf - examples allowing you to run a few performance tests on the server

    • standard - examples demonstrating various broker features.

    • sub-modules - examples of integrated external modules.

  • protocols - Protocol specific examples

    • amqp

    • mqtt

    • openwire

    • stomp

1. Running the Examples

First, run mvn clean package in the repository root to prepare a broker distribution in the artemis-distribution/target directory for use by the examples.

To run any example, simply cd into the appropriate example directory and type mvn verify or mvn install (For details please read the readme.md in each example directory).

You can use the profile -Pexamples to run multiple examples under any example tree.

For each example, you will have a created server under ./target/server0 (some examples use more than one server).

You have the option to prevent the example from starting the server (e.g. if you want to start the server manually) by simply specifying the -PnoServer profile, e.g.:

  1. # running an example without running the server
  2. mvn verify -PnoServer

Also under ./target there will be a script repeating the commands to create each server. Here is the create-server0.sh generated by the Queue example. This is useful to see exactly what command(s) are required to configure the server(s).

  1. # These are the commands used to create server0
  2. /myInstallDirectory/apache-artemis/bin/artemis create --allow-anonymous --silent --force --no-web --user guest --password guest --role guest --port-offset 0 --data ./data --allow-anonymous --no-autotune --verbose /myInstallDirectory/apache-artemis-1.1.0/examples/features/standard/queue/target/server0

Several examples use UDP clustering which may not work in your environment by default. On linux the command would be:

  1. route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

This command should be run as root. This will redirect any traffic directed to 224.0.0.0 to the loopback interface. On Mac OS X, the command is slightly different:

  1. sudo route add 224.0.0.0 127.0.0.1 -netmask 240.0.0.0

All the examples use the Maven plugin, which can be useful for running your test servers as well.

This is the common output when running an example. On this case taken from the Queue example:

  1. [INFO] -------------< org.apache.activemq.examples.broker:queue >--------------
  2. [INFO] Building ActiveMQ Artemis JMS Queue Example 2.32.0
  3. [INFO] from pom.xml
  4. [INFO] --------------------------------[ jar ]---------------------------------
  5. [INFO]
  6. [INFO] --- enforcer:3.3.0:enforce (enforce-maven-version) @ queue ---
  7. [INFO] Rule 0: org.apache.maven.enforcer.rules.version.RequireMavenVersion passed
  8. [INFO]
  9. [INFO] --- enforcer:3.3.0:enforce (enforce-java-version) @ queue ---
  10. [INFO] Rule 0: org.apache.maven.enforcer.rules.version.RequireJavaVersion passed
  11. [INFO]
  12. [INFO] --- remote-resources:3.1.0:process (process-resource-bundles) @ queue ---
  13. [INFO] Preparing remote bundle org.apache.apache.resources:apache-jar-resource-bundle:1.5
  14. [INFO] Copying 3 resources from 1 bundle.
  15. [INFO]
  16. [INFO] --- resources:3.3.1:resources (default-resources) @ queue ---
  17. [INFO] Copying 1 resource from src/main/resources to target/classes
  18. [INFO] Copying 3 resources from target/maven-shared-archive-resources to target/classes
  19. [INFO]
  20. [INFO] --- compiler:3.11.0:compile (default-compile) @ queue ---
  21. [INFO] Changes detected - recompiling the module! :source
  22. [INFO] Compiling 1 source file with javac [debug target 11] to target/classes
  23. [INFO]
  24. [INFO] --- resources:3.3.1:testResources (default-testResources) @ queue ---
  25. [INFO] skip non existing resourceDirectory /home/user/activemq-artemis-examples/examples/features/standard/queue/src/test/resources
  26. [INFO] Copying 3 resources from target/maven-shared-archive-resources to target/test-classes
  27. [INFO]
  28. [INFO] --- compiler:3.11.0:testCompile (default-testCompile) @ queue ---
  29. [INFO] No sources to compile
  30. [INFO]
  31. [INFO] --- surefire:2.22.2:test (default-test) @ queue ---
  32. [INFO]
  33. [INFO] --- jar:3.3.0:jar (default-jar) @ queue ---
  34. [INFO] Building jar: /home/user/activemq-artemis-examples/examples/features/standard/queue/target/queue-2.32.0.jar
  35. [INFO]
  36. [INFO] --- site:3.12.1:attach-descriptor (attach-descriptor) @ queue ---
  37. [INFO] Skipping because packaging 'jar' is not pom.
  38. [INFO]
  39. [INFO] --- source:3.3.0:jar-no-fork (attach-sources) @ queue ---
  40. [INFO] Building jar: /home/user/activemq-artemis-examples/examples/features/standard/queue/target/queue-2.32.0-sources.jar
  41. [INFO]
  42. [INFO] --- artemis:2.32.0:create (create) @ queue ---
  43. [INFO]
  44. [INFO] --- artemis:2.32.0:cli (start) @ queue ---
  45. [INFO] awaiting server to start
  46. server-out: _ _ _
  47. server-out: / \ ____| |_ ___ __ __(_) _____
  48. server-out: / _ \| _ \ __|/ _ \ \/ | |/ __/
  49. server-out: / ___ \ | \/ |_/ __/ |\/| | |\___ \
  50. server-out: /_/ \_\| \__\____|_| |_|_|/___ /
  51. server-out: Apache ActiveMQ Artemis 2.32.0
  52. server-out:
  53. server-out:
  54. [INFO] awaiting server to start
  55. server-out:2023-12-14 14:33:06,314 INFO [org.apache.activemq.artemis.integration.bootstrap] AMQ101000: Starting ActiveMQ Artemis Server version 2.32.0
  56. server-out:2023-12-14 14:33:06,339 INFO [org.apache.activemq.artemis.core.server] AMQ221000: primary Message Broker is starting with configuration Broker Configuration (clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,largeMessagesDirectory=./data/large-messages,pagingDirectory=./data/paging)
  57. server-out:2023-12-14 14:33:06,354 INFO [org.apache.activemq.artemis.core.server] AMQ221012: Using AIO Journal
  58. server-out:2023-12-14 14:33:06,380 INFO [org.apache.activemq.artemis.core.server] AMQ221057: Global Max Size is being adjusted to 1/2 of the JVM max size (-Xmx). being defined as 1073741824
  59. server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-server]. Adding protocol support for: CORE
  60. server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-amqp-protocol]. Adding protocol support for: AMQP
  61. server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-hornetq-protocol]. Adding protocol support for: HORNETQ
  62. server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-mqtt-protocol]. Adding protocol support for: MQTT
  63. server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-openwire-protocol]. Adding protocol support for: OPENWIRE
  64. server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol module found: [artemis-stomp-protocol]. Adding protocol support for: STOMP
  65. server-out:2023-12-14 14:33:06,411 INFO [org.apache.activemq.artemis.core.server] AMQ221034: Waiting indefinitely to obtain primary lock
  66. server-out:2023-12-14 14:33:06,411 INFO [org.apache.activemq.artemis.core.server] AMQ221035: Primary Server Obtained primary lock
  67. server-out:2023-12-14 14:33:06,450 INFO [org.apache.activemq.artemis.core.server] AMQ221080: Deploying address DLQ supporting [ANYCAST]
  68. server-out:2023-12-14 14:33:06,454 INFO [org.apache.activemq.artemis.core.server] AMQ221003: Deploying ANYCAST queue DLQ on address DLQ
  69. server-out:2023-12-14 14:33:06,476 INFO [org.apache.activemq.artemis.core.server] AMQ221080: Deploying address ExpiryQueue supporting [ANYCAST]
  70. server-out:2023-12-14 14:33:06,476 INFO [org.apache.activemq.artemis.core.server] AMQ221003: Deploying ANYCAST queue ExpiryQueue on address ExpiryQueue
  71. server-out:2023-12-14 14:33:06,681 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started EPOLL Acceptor at 0.0.0.0:61616 for protocols [CORE,MQTT,AMQP,STOMP,HORNETQ,OPENWIRE]
  72. server-out:2023-12-14 14:33:06,683 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started EPOLL Acceptor at 0.0.0.0:5445 for protocols [HORNETQ,STOMP]
  73. server-out:2023-12-14 14:33:06,685 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started EPOLL Acceptor at 0.0.0.0:5672 for protocols [AMQP]
  74. server-out:2023-12-14 14:33:06,687 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started EPOLL Acceptor at 0.0.0.0:1883 for protocols [MQTT]
  75. server-out:2023-12-14 14:33:06,689 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started EPOLL Acceptor at 0.0.0.0:61613 for protocols [STOMP]
  76. server-out:2023-12-14 14:33:06,690 INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
  77. server-out:2023-12-14 14:33:06,690 INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis Message Broker version 2.32.0 [0.0.0.0, nodeID=b20d82dd-9a8d-11ee-a56d-000c2997e711]
  78. [INFO] Server started
  79. [INFO]
  80. [INFO] --- artemis:2.32.0:runClient (runClient) @ queue ---
  81. Sent message: This is a text message
  82. Received message: This is a text message
  83. [INFO]
  84. [INFO] --- artemis:2.32.0:stop (stop) @ queue ---
  85. server-out:2023-12-14 14:33:08,295 INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis Message Broker version 2.32.0 [b20d82dd-9a8d-11ee-a56d-000c2997e711] stopped, uptime 1.969 seconds
  86. server-out:Server stopped!
  87. [INFO] ------------------------------------------------------------------------
  88. [INFO] BUILD SUCCESS
  89. [INFO] ------------------------------------------------------------------------
  90. [INFO] Total time: 4.845 s
  91. [INFO] Finished at: 2023-12-14T14:33:08Z
  92. [INFO] ------------------------------------------------------------------------

This list includes a preview of some examples that exist for Artemis in the Examples Repository, see the repository for more.

2. Application-Layer Failover

Apache ActiveMQ Artemis also supports Application-Layer failover, useful in the case that replication is not enabled on the server side.

With Application-Layer failover, it’s up to the application to register a JMS ExceptionListener with Apache ActiveMQ Artemis which will be called by Apache ActiveMQ Artemis in the event that connection failure is detected.

The code in the ExceptionListener then recreates the JMS connection, session, etc on another node and the application can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer failover differs from automatic failover in that some client side coding is required in order to implement this. Also, with Application-layer failover, since the old session object dies and a new one is created, any uncommitted work in the old session will be lost, and any unacknowledged messages might be redelivered.

3. Core Bridge Example

The bridge example demonstrates a core bridge deployed on one server, which consumes messages from a local queue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two Apache ActiveMQ Artemis servers which are remotely separated. Core bridges are resilient and will cope with temporary connection failure allowing them to be an ideal choice for forwarding over unreliable connections, e.g. a WAN.

4. Browser

The browser example shows you how to use a JMS QueueBrowser with Apache ActiveMQ Artemis.

Queues are a standard part of JMS, please consult the JMS 2.0 specification for full details.

A QueueBrowser is used to look at messages on the queue without removing them. It can scan the entire content of a queue or only messages matching a message selector.

5. Camel

The camel example demonstrates how to build and deploy a Camel route to the broker using a web application archive (i.e. war file).

6. Client Kickoff

The client-kickoff example shows how to terminate client connections given an IP address using the JMX management API.

7. Client side failover listener

The client-side-failoverlistener example shows how to register a listener to monitor failover events

8. Client-Side Load-Balancing

The client-side-load-balancing example demonstrates how sessions created from a single JMS Connection can be created to different nodes of the cluster. In other words it demonstrates how Apache ActiveMQ Artemis does client-side load-balancing of sessions across the cluster.

9. Clustered Durable Subscription

This example demonstrates a clustered JMS durable subscription

10. Clustered Grouping

This is similar to the message grouping example except that it demonstrates it working over a cluster. Messages sent to different nodes with the same group id will be sent to the same node and the same consumer.

11. Clustered Queue

The clustered-queue example demonstrates a queue deployed on two different nodes. The two nodes are configured to form a cluster. We then create a consumer for the queue on each node, and we create a producer on only one of the nodes. We then send some messages via the producer, and we verify that both consumers receive the sent messages in a round-robin fashion.

12. Clustering with JGroups

The clustered-jgroups example demonstrates how to form a two node cluster using JGroups as its underlying topology discovery technique, rather than the default UDP broadcasting. We then create a consumer for the queue on each node, and we create a producer on only one of the nodes. We then send some messages via the producer, and we verify that both consumers receive the sent messages in a round-robin fashion.

13. Clustered Standalone

The clustered-standalone example demonstrates how to configure and starts 3 cluster nodes on the same machine to form a cluster. A subscriber for a JMS topic is created on each node, and we create a producer on only one of the nodes. We then send some messages via the producer, and we verify that the 3 subscribers receive all the sent messages.

14. Clustered Static Discovery

This example demonstrates how to configure a cluster using a list of connectors rather than UDP for discovery

15. Clustered Static Cluster One Way

This example demonstrates how to set up a cluster where cluster connections are one way, i.e. server A -> Server B -> Server C

16. Clustered Topic

The clustered-topic example demonstrates a JMS topic deployed on two different nodes. The two nodes are configured to form a cluster. We then create a subscriber on the topic on each node, and we create a producer on only one of the nodes. We then send some messages via the producer, and we verify that both subscribers receive all the sent messages.

17. Message Consumer Rate Limiting

With Apache ActiveMQ Artemis you can specify a maximum consume rate at which a JMS MessageConsumer will consume messages. This can be specified when creating or deploying the connection factory.

If this value is specified then Apache ActiveMQ Artemis will ensure that messages are never consumed at a rate higher than the specified rate. This is a form of consumer throttling.

18. Dead Letter

The dead-letter example shows you how to define and deal with dead letter messages. Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them is rolled back).

Such a message goes back to the JMS destination ready to be redelivered. However, this means it is possible for a message to be delivered again and again without any success and remain in the destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful delivery attempts, the message is removed from the destination and put instead in a dead letter destination where they can be consumed for further investigation.

19. Delayed Redelivery

The delayed-redelivery example demonstrates how Apache ActiveMQ Artemis can be configured to provide a delayed redelivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a delayed redelivery, the system can get into a “thrashing” state, with delivery being attempted, the client rolling back, and delivery being re-attempted in quick succession, using up valuable CPU and network resources.

20. Divert

Apache ActiveMQ Artemis diverts allow messages to be transparently “diverted” or copied from one address to another with just some simple configuration defined on the server side.

21. Durable Subscription

The durable-subscription example shows you how to use a durable subscription with Apache ActiveMQ Artemis. Durable subscriptions are a standard part of JMS, please consult the JMS 1.1 specification for full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages contained in them persist longer than the lifetime of the subscriber - i.e. they will accumulate messages sent to the topic even if there is no active subscriber on them. They will also survive server restarts or crashes. Note that for the messages to be persisted, the messages sent to them must be marked as durable messages.

22. Embedded

The embedded example shows how to embed a broker within your own code using POJO instantiation and no config files.

23. Embedded Simple

The embedded-simple example shows how to embed a broker within your own code using regular Apache ActiveMQ Artemis XML files.

24. Exclusive Queue

The exlusive-queue example shows you how to use exclusive queues, that route all messages to only one consumer at a time.

25. Message Expiration

The expiry example shows you how to define and deal with message expiration. Messages can be retained in the messaging system for a limited period of time before being removed. JMS specification states that clients should not receive messages that have been expired (but it does not guarantee this will not happen).

Apache ActiveMQ Artemis can assign an expiry address to a given queue so that when messages are expired, they are removed from the queue and sent to the expiry address. These “expired” messages can later be consumed from the expiry address for further inspection.

26. Apache ActiveMQ Artemis Resource Adapter example

This examples shows how to build the activemq resource adapters a rar for deployment in other Application Server’s

27. HTTP Transport

The http-transport example shows you how to configure Apache ActiveMQ Artemis to use the HTTP protocol as its transport layer.

28. Instantiate JMS Objects Directly

Usually, JMS Objects such as ConnectionFactory, Queue and Topic instances are looked up from JNDI before being used by the client code. This objects are called “administered objects” in JMS terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue Apache ActiveMQ Artemis also supports the direct instantiation of these administered objects on the client side so you don’t have to use JNDI for JMS.

29. Interceptor

Apache ActiveMQ Artemis allows an application to use an interceptor to hook into the messaging system. Interceptors allow you to handle various message events in Apache ActiveMQ Artemis.

30. Interceptor AMQP

Similar to the Interceptor example, but using AMQP interceptors.

31. Interceptor Client

Similar to the Interceptor example, but using interceptors on the client rather than the broker.

32. Interceptor MQTT

Similar to the Interceptor example, but using MQTT interceptors.

33. JAAS

The jaas example shows you how to configure Apache ActiveMQ Artemis to use JAAS for security. Apache ActiveMQ Artemis can leverage JAAS to delegate user authentication and authorization to existing security infrastructure.

34. JMS Auto Closable

The jms-auto-closeable example shows how JMS resources, such as connections, sessions and consumers, in JMS 2 can be automatically closed on error.

35. JMS Completion Listener

The jms-completion-listener example shows how to send a message asynchronously to Apache ActiveMQ Artemis and use a CompletionListener to be notified of the Broker receiving it.

36. JMS Bridge

The jms-bridge example shows how to setup a bridge between two standalone Apache ActiveMQ Artemis servers.

37. JMS Context

The jms-context example shows how to send and receive a message to/from an address/queue using Apache ActiveMQ Artemis by using a JMS Context.

A JMSContext is part of JMS 2.0 and combines the JMS Connection and Session Objects into a simple Interface.

38. JMS Shared Consumer

The jms-shared-consumer example shows you how can use shared consumers to share a subscription on a topic. In JMS 1.1 this was not allowed and so caused a scalability issue. In JMS 2 this restriction has been lifted so you can share the load across different threads and connections.

39. JMX Management

The jmx example shows how to manage Apache ActiveMQ Artemis using JMX.

40. Large Message

The large-message example shows you how to send and receive very large messages with Apache ActiveMQ Artemis. Apache ActiveMQ Artemis supports the sending and receiving of huge messages, much larger than can fit in available RAM on the client or server. Effectively the only limit to message size is the amount of disk space you have on the server.

Large messages are persisted on the server so they can survive a server restart. In other words Apache ActiveMQ Artemis doesn’t just do a simple socket stream from the sender to the consumer.

41. Last-Value Queue

The last-value-queue example shows you how to define and deal with last-value queues. Last-value queues are special queues which discard any messages when a newer message with the same value for a well-defined last-value property is put in the queue. In other words, a last-value queue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the latest price for a particular stock.

42. Management

The management example shows how to manage Apache ActiveMQ Artemis using JMS Messages to invoke management operations on the server.

43. Management Notification

The management-notification example shows how to receive management notifications from Apache ActiveMQ Artemis using JMS messages. Apache ActiveMQ Artemis servers emit management notifications when events of interest occur (consumers are created or closed, addresses are created or deleted, security authentication fails, etc.).

44. Message Counter

The message-counters example shows you how to use message counters to obtain message information for a queue.

45. Message Group

The message-group example shows you how to configure and use message groups with Apache ActiveMQ Artemis. Message groups allow you to pin messages so they are only consumed by a single consumer. Message groups are sets of messages that has the following characteristics:

  • Messages in a message group share the same group id, i.e. they have same JMSXGroupID string property values

  • The consumer that receives the first message of a group will receive all the messages that belongs to the group

46. Message Group

The message-group2 example shows you how to configure and use message groups with Apache ActiveMQ Artemis via a connection factory.

47. Message Priority

Message Priority can be used to influence the delivery order for messages.

It can be retrieved by the message’s standard header field ‘JMSPriority’ as defined in JMS specification version 1.1.

The value is of type integer, ranging from 0 (the lowest) to 9 (the highest). When messages are being delivered, their priorities will effect their order of delivery. Messages of higher priorities will likely be delivered before those of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations. Please consult the JMS 1.1 specification for full details.

48. Multiple Failover

This example demonstrates how to set up a primary server with multiple backups

49. Multiple Failover Failback

This example demonstrates how to set up a primary server with multiple backups but forcing failover back to the original primary server

50. No Consumer Buffering

By default, Apache ActiveMQ Artemis consumers buffer messages from the server in a client side buffer before you actually receive them on the client side. This improves performance since otherwise every time you called receive() or had processed the last message in a MessageListener onMessage() method, the Apache ActiveMQ Artemis client would have to go the server to request the next message, which would then get sent to the client side, if one was available.

This would involve a network round trip for every message and reduce performance. Therefore, by default, Apache ActiveMQ Artemis pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and Apache ActiveMQ Artemis allows it to be switched off. This example demonstrates that.

51. Non-Transaction Failover With Server Data Replication

The non-transaction-failover example demonstrates two servers coupled as a live-backup pair for high availability (HA), and a client using a non-transacted JMS session failing over from primary to backup when the primary server is crashed.

Apache ActiveMQ Artemis implements failover of client connections between primary and backup servers. This is implemented by the replication of state between primary and backup nodes. When replication is configured and a primary node crashes, the client connections can carry on and continue to send and consume messages. When non-transacted sessions are used, once and only once message delivery is not guaranteed and it is possible that some messages will be lost or delivered twice.

52. OpenWire

The Openwire example shows how to configure an Apache ActiveMQ Artemis server to communicate with an Apache ActiveMQ Artemis JMS client that uses open-wire protocol.

You will find the queue example for open wire, and the chat example. The virtual-topic-mapping examples shows how to map the ActiveMQ “Classic” Virtual Topic naming convention to work with the Artemis Address model.

53. Paging

The paging example shows how Apache ActiveMQ Artemis can support huge queues even when the server is running in limited RAM. It does this by transparently paging messages to disk, and depaging them when they are required.

54. Pre-Acknowledge

Standard JMS supports three acknowledgement modes: AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK_ACKNOWLEDGE. For a full description on these modes please consult the JMS specification, or any JMS tutorial.

All of these standard modes involve sending acknowledgements from the client to the server. However in some cases, you really don’t mind losing messages in event of failure, so it would make sense to acknowledge the message on the server before delivering it to the client. This example demonstrates how Apache ActiveMQ Artemis allows this with an extra acknowledgement mode.

55. Message Producer Rate Limiting

The producer-rte-limit example demonstrates how, with Apache ActiveMQ Artemis, you can specify a maximum send rate at which a JMS message producer will send messages.

56. Queue

A simple example demonstrating a queue.

57. Message Redistribution

The queue-message-redistribution example demonstrates message redistribution between queues with the same name deployed in different nodes of a cluster.

58. Queue Requestor

A simple example demonstrating a JMS queue requestor.

59. Queue with Message Selector

The queue-selector example shows you how to selectively consume messages using message selectors with queue consumers.

60. Reattach Node example

The Reattach Node example shows how a client can try to reconnect to the same server instead of failing the connection immediately and notifying any user ExceptionListener objects. Apache ActiveMQ Artemis can be configured to automatically retry the connection, and reattach to the server when it becomes available again across the network.

61. Replicated Failback example

An example showing how failback works when using replication. In this example a primary server will replicate all its Journal to a backup server as it updates it. When the primary server crashes the backup takes over from the primary server and the client reconnects and carries on from where it left off.

62. Replicated Failback static example

An example showing how failback works when using replication, but this time with static connectors

63. Replicated multiple failover example

An example showing how to configure multiple backups when using replication

64. Replicated Failover transaction example

An example showing how failover works with a transaction when using replication

65. Request-Reply example

A simple example showing the JMS request-response pattern.

66. Scheduled Message

The scheduled-message example shows you how to send a scheduled message to an address/queue with Apache ActiveMQ Artemis. Scheduled messages won’t get delivered until a specified time in the future.

67. Security

The security example shows you how configure and use role based security with Apache ActiveMQ Artemis.

68. Security LDAP

The security-ldap example shows you how configure and use role based security with Apache ActiveMQ Artemis & an embedded instance of the Apache DS LDAP server.

69. Security keycloak

The security-keycloak example shows you how to delegate security with Apache ActiveMQ Artemis & an external Keycloak. Using OAuth of the web console and direct access for JMS clients.

70. Send Acknowledgements

The send-acknowledgements example shows you how to use Apache ActiveMQ Artemis’s advanced asynchronous send acknowledgements feature to obtain acknowledgement from the server that sends have been received and processed in a separate stream to the sent messages.

71. Slow Consumer

The slow-consumer example shows you how to detect slow consumers and configure a slow consumer policy in Apache ActiveMQ Artemis’s

72. Spring Integration

This example shows how to use embedded JMS using Apache ActiveMQ Artemis’s Spring integration.

73. SSL Transport

The ssl-enabled shows you how to configure SSL with Apache ActiveMQ Artemis to send and receive message.

74. Static Message Selector

The static-selector example shows you how to configure an Apache ActiveMQ Artemis core queue with static message selectors (filters).

75. Static Message Selector Using JMS

The static-selector-jms example shows you how to configure an Apache ActiveMQ Artemis queue with static message selectors (filters) using JMS.

76. Stomp

The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and receive Stomp messages.

77. Stomp1.1

The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and receive Stomp messages via a Stomp 1.1 connection.

78. Stomp1.2

The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and receive Stomp messages via a Stomp 1.2 connection.

79. Stomp Over Web Sockets

The stomp-websockets example shows you how to configure an Apache ActiveMQ Artemis server to send and receive Stomp messages directly from Web browsers (provided they support Web Sockets).

80. Symmetric Cluster

The symmetric-cluster example demonstrates a symmetric cluster set-up with Apache ActiveMQ Artemis.

Apache ActiveMQ Artemis has extremely flexible clustering which allows you to set-up servers in many different topologies. The most common topology that you’ll perhaps be familiar with if you are used to application server clustering is a symmetric cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as every other node, and every node is connected to every other node in the cluster.

81. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.

82. Topic

A simple example demonstrating a JMS topic.

83. Topic Hierarchy

Apache ActiveMQ Artemis supports topic hierarchies. With a topic hierarchy you can register a subscriber with a wild-card and that subscriber will receive any messages sent to an address that matches the wild card.

84. Topic Selector 1

The topic-selector-example1 example shows you how to send message to a JMS Topic, and subscribe them using selectors with Apache ActiveMQ Artemis.

85. Topic Selector 2

The topic-selector-example2 example shows you how to selectively consume messages using message selectors with topic consumers.

86. Transaction Failover

The transaction-failover example demonstrates two servers coupled as a live-backup pair for high availability (HA), and a client using a transacted JMS session failing over from primary to backup when the primary server is crashed.

Apache ActiveMQ Artemis implements failover of client connections between primary and backup servers. This is implemented by the sharing of a journal between the servers. When a primary node crashes, the client connections can carry and continue to send and consume messages. When transacted sessions are used, once and only once message delivery is guaranteed.

87. Failover Without Transactions

The stop-server-failover example demonstrates failover of the JMS connection from one node to another when the primary server crashes using a JMS non-transacted session.

88. Transactional Session

The transactional example shows you how to use a transactional Session with Apache ActiveMQ Artemis.

89. XA Heuristic

The xa-heuristic example shows you how to make an XA heuristic decision through Apache ActiveMQ Artemis Management Interface. A heuristic decision is a unilateral decision to commit or rollback an XA transaction branch after it has been prepared.

90. XA Receive

The xa-receive example shows you how message receiving behaves in an XA transaction in Apache ActiveMQ Artemis.

91. XA Send

The xa-send example shows you how message sending behaves in an XA transaction in Apache ActiveMQ Artemis.