Builtin Functions

Builtin functions are provided by the compiler and are prefixed with @. The comptime keyword on a parameter means that the parameter must be known at compile time.

@addWithOverflow

  1. @addWithOverflow(comptime T: type, a: T, b: T, result: *T) bool

Performs result.* = a + b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@alignCast

  1. @alignCast(comptime alignment: u29, ptr: var) var

ptr can be *T, fn(), ?*T, ?fn(), or []T. It returns the same type as ptr except with the alignment adjusted to the new value.

A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.

@alignOf

  1. @alignOf(comptime T: type) comptime_int

This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.

  1. const assert = @import("std").debug.assert;
  2. comptime {
  3. assert(*u32 == *align(@alignOf(u32)) u32);
  4. }

The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).

See also:

@ArgType

  1. @ArgType(comptime T: type, comptime n: usize) type

This builtin function takes a function type and returns the type of the parameter at index n.

T must be a function type.

Note: This function is deprecated. Use @typeInfo instead.

@asyncCall

  1. @asyncCall(frame_buffer: []align(@alignOf(@Frame(anyAsyncFunction))) u8, result_ptr, function_ptr, args: ...) anyframe->T

@asyncCall performs an async call on a function pointer, which may or may not be an async function.

The provided frame_buffer must be large enough to fit the entire function frame. This size can be determined with @frameSize. To provide a too-small buffer invokes safety-checked Undefined Behavior.

result_ptr is optional (null may be provided). If provided, the function call will write its result directly to the result pointer, which will be available to read after await completes. Any result location provided to await will copy the result from result_ptr.

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. test "async fn pointer in a struct field" {
  4. var data: i32 = 1;
  5. const Foo = struct {
  6. bar: async fn (*i32) void,
  7. };
  8. var foo = Foo{ .bar = func };
  9. var bytes: [64]u8 align(@alignOf(@Frame(func))) = undefined;
  10. const f = @asyncCall(&bytes, {}, foo.bar, &data);
  11. assert(data == 2);
  12. resume f;
  13. assert(data == 4);
  14. }
  15. async fn func(y: *i32) void {
  16. defer y.* += 2;
  17. y.* += 1;
  18. suspend;
  19. }
  1. $ zig test test.zig
  2. 1/1 test "async fn pointer in a struct field"...OK
  3. All tests passed.

@atomicLoad

  1. @atomicLoad(comptime T: type, ptr: *const T, comptime ordering: builtin.AtomicOrder) T

This builtin function atomically dereferences a pointer and returns the value.

T must be a pointer type, a bool, or an integer whose bit count meets these requirements:

  • At least 8
  • At most the same as usize
  • Power of 2

TODO right now bool is not accepted. Also I think we could make non powers of 2 work fine, maybe we can remove this restriction

@atomicRmw

  1. @atomicRmw(comptime T: type, ptr: *T, comptime op: builtin.AtomicRmwOp, operand: T, comptime ordering: builtin.AtomicOrder) T

This builtin function atomically modifies memory and then returns the previous value.

T must be a pointer type, a bool, or an integer whose bit count meets these requirements:

  • At least 8
  • At most the same as usize
  • Power of 2

TODO right now bool is not accepted. Also I think we could make non powers of 2 work fine, maybe we can remove this restriction

Supported operations:

  • .Xchg - stores the operand unmodified.
  • .Add - for integers, twos complement wraparound addition. Also supports Floats.
  • .Sub - for integers, twos complement wraparound subtraction. Also supports Floats.
  • .And - bitwise and
  • .Nand - bitwise nand
  • .Or - bitwise or
  • .Xor - bitwise xor
  • .Max - stores the operand if it is larger. Supports integers and floats.
  • .Min - stores the operand if it is smaller. Supports integers and floats.

@bitCast

  1. @bitCast(comptime DestType: type, value: var) DestType

Converts a value of one type to another type.

Asserts that @sizeOf(@typeOf(value)) == @sizeOf(DestType).

Asserts that @typeId(DestType) != @import("builtin").TypeId.Pointer. Use @ptrCast or @intToPtr if you need this.

Can be used for these things for example:

  • Convert f32 to u32 bits
  • Convert i32 to u32 preserving twos complement

Works at compile-time if value is known at compile time. It's a compile error to bitcast a struct to a scalar type of the same size since structs have undefined layout. However if the struct is packed then it works.

@bitOffsetOf

  1. @bitOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int

Returns the bit offset of a field relative to its containing struct.

For non packed structs, this will always be divisible by 8. For packed structs, non-byte-aligned fields will share a byte offset, but they will have different bit offsets.

See also:

@boolToInt

  1. @boolToInt(value: bool) u1

Converts true to u1(1) and false to u1(0).

If the value is known at compile-time, the return type is comptime_int instead of u1.

@breakpoint

  1. @breakpoint()

This function inserts a platform-specific debug trap instruction which causes debuggers to break there.

This function is only valid within function scope.

@mulAdd

  1. @mulAdd(comptime T: type, a: T, b: T, c: T) T

Fused multiply add (for floats), similar to (a * b) + c, except only rounds once, and is thus more accurate.

@byteSwap

  1. @byteSwap(comptime T: type, operand: T) T

T must be an integer type with bit count evenly divisible by 8.

operand may be an integer or vector.

Swaps the byte order of the integer. This converts a big endian integer to a little endian integer, and converts a little endian integer to a big endian integer.

Note that for the purposes of memory layout with respect to endianness, the integer type should be related to the number of bytes reported by @sizeOf bytes. This is demonstrated with u24. @sizeOf(u24) == 4, which means that a u24 stored in memory takes 4 bytes, and those 4 bytes are what are swapped on a little vs big endian system. On the other hand, if T is specified to be u24, then only 3 bytes are reversed.

@bitReverse

  1. @bitReverse(comptime T: type, integer: T) T

T accepts any integer type.

Reverses the bitpattern of an integer value, including the sign bit if applicable.

For example 0b10110110 (u8 = 182, i8 = -74) becomes 0b01101101 (u8 = 109, i8 = 109).

@byteOffsetOf

  1. @byteOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int

Returns the byte offset of a field relative to its containing struct.

See also:

@bytesToSlice

  1. @bytesToSlice(comptime Element: type, bytes: []u8) []Element

Converts a slice of bytes or array of bytes into a slice of Element. The resulting slice has the same pointer properties as the parameter.

Attempting to convert a number of bytes with a length that does not evenly divide into a slice of elements results in safety-protected Undefined Behavior.

@cDefine

  1. @cDefine(comptime name: []u8, value)

This function can only occur inside @cImport.

This appends #define $name $value to the @cImport temporary buffer.

To define without a value, like this:

  1. #define _GNU_SOURCE

Use the void value, like this:

  1. @cDefine("_GNU_SOURCE", {})

See also:

@cImport

  1. @cImport(expression) type

This function parses C code and imports the functions, types, variables, and compatible macro definitions into a new empty struct type, and then returns that type.

expression is interpreted at compile time. The builtin functions @cInclude, @cDefine, and @cUndef work within this expression, appending to a temporary buffer which is then parsed as C code.

Usually you should only have one @cImport in your entire application, because it saves the compiler from invoking clang multiple times, and prevents inline functions from being duplicated.

Reasons for having multiple @cImport expressions would be:

  • To avoid a symbol collision, for example if foo.h and bar.h both #define CONNECTION_COUNT
  • To analyze the C code with different preprocessor defines

See also:

@cInclude

  1. @cInclude(comptime path: []u8)

This function can only occur inside @cImport.

This appends #include <$path>\n to the c_import temporary buffer.

See also:

@clz

  1. @clz(comptime T: type, integer: T)

This function counts the number of most-significant (leading in a big-Endian sense) zeroes in integer.

If integer is known at comptime, the return type is comptime_int. Otherwise, the return type is an unsigned integer with the minimum number of bits that can represent the bit count of the integer type.

If integer is zero, @clz returns the bit width of integer type T.

See also:

@cmpxchgStrong

  1. @cmpxchgStrong(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T

This function performs a strong atomic compare exchange operation. It's the equivalent of this code, except atomic:

  1. fn cmpxchgStrongButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T {
  2. const old_value = ptr.*;
  3. if (old_value == expected_value) {
  4. ptr.* = new_value;
  5. return null;
  6. } else {
  7. return old_value;
  8. }
  9. }

If you are using cmpxchg in a loop, @cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions.

AtomicOrder can be found with @import("builtin").AtomicOrder.

@typeOf(ptr).alignment must be >= @sizeOf(T).

See also:

@cmpxchgWeak

  1. @cmpxchgWeak(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T

This function performs a weak atomic compare exchange operation. It's the equivalent of this code, except atomic:

  1. fn cmpxchgWeakButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T {
  2. const old_value = ptr.*;
  3. if (old_value == expected_value and usuallyTrueButSometimesFalse()) {
  4. ptr.* = new_value;
  5. return null;
  6. } else {
  7. return old_value;
  8. }
  9. }

If you are using cmpxchg in a loop, the sporadic failure will be no problem, and cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions. However if you need a stronger guarantee, use @cmpxchgStrong.

AtomicOrder can be found with @import("builtin").AtomicOrder.

@typeOf(ptr).alignment must be >= @sizeOf(T).

See also:

@compileError

  1. @compileError(comptime msg: []u8)

This function, when semantically analyzed, causes a compile error with the message msg.

There are several ways that code avoids being semantically checked, such as using if or switch with compile time constants, and comptime functions.

@compileLog

  1. @compileLog(args: ...)

This function prints the arguments passed to it at compile-time.

To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.

This function can be used to do "printf debugging" on compile-time executing code.

test.zig

  1. const warn = @import("std").debug.warn;
  2. const num1 = blk: {
  3. var val1: i32 = 99;
  4. @compileLog("comptime val1 = ", val1);
  5. val1 = val1 + 1;
  6. break :blk val1;
  7. };
  8. test "main" {
  9. @compileLog("comptime in main");
  10. warn("Runtime in main, num1 = {}.\n", num1);
  11. }
  1. $ zig test test.zig
  2. | "comptime in main"
  3. | "comptime val1 = ", 99
  4. /home/andy/dev/zig/docgen_tmp/test.zig:11:5: error: found compile log statement
  5. @compileLog("comptime in main");
  6. ^
  7. /home/andy/dev/zig/docgen_tmp/test.zig:1:34: note: referenced here
  8. const warn = @import("std").debug.warn;
  9. ^
  10. /home/andy/dev/zig/docgen_tmp/test.zig:13:5: note: referenced here
  11. warn("Runtime in main, num1 = {}.\n", num1);
  12. ^
  13. /home/andy/dev/zig/docgen_tmp/test.zig:5:5: error: found compile log statement
  14. @compileLog("comptime val1 = ", val1);
  15. ^
  16. /home/andy/dev/zig/docgen_tmp/test.zig:13:43: note: referenced here
  17. warn("Runtime in main, num1 = {}.\n", num1);
  18. ^

will ouput:

If all @compileLog calls are removed or not encountered by analysis, the program compiles successfully and the generated executable prints:

test.zig

  1. const warn = @import("std").debug.warn;
  2. const num1 = blk: {
  3. var val1: i32 = 99;
  4. val1 = val1 + 1;
  5. break :blk val1;
  6. };
  7. test "main" {
  8. warn("Runtime in main, num1 = {}.\n", num1);
  9. }
  1. $ zig test test.zig
  2. 1/1 test "main"...Runtime in main, num1 = 100.
  3. OK
  4. All tests passed.

@ctz

  1. @ctz(comptime T: type, integer: T)

This function counts the number of least-significant (trailing in a big-Endian sense) zeroes in integer.

If integer is known at comptime, the return type is comptime_int. Otherwise, the return type is an unsigned integer with the minimum number of bits that can represent the bit count of the integer type.

If integer is zero, @ctz returns the bit width of integer type T.

See also:

@cUndef

  1. @cUndef(comptime name: []u8)

This function can only occur inside @cImport.

This appends #undef $name to the @cImport temporary buffer.

See also:

@divExact

  1. @divExact(numerator: T, denominator: T) T

Exact division. Caller guarantees denominator != 0 and @divTrunc(numerator, denominator) * denominator == numerator.

  • @divExact(6, 3) == 2
  • @divExact(a, b) * b == a

For a function that returns a possible error code, use @import("std").math.divExact.

See also:

@divFloor

  1. @divFloor(numerator: T, denominator: T) T

Floored division. Rounds toward negative infinity. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1).

  • @divFloor(-5, 3) == -2
  • @divFloor(a, b) + @mod(a, b) == a

For a function that returns a possible error code, use @import("std").math.divFloor.

See also:

@divTrunc

  1. @divTrunc(numerator: T, denominator: T) T

Truncated division. Rounds toward zero. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1).

  • @divTrunc(-5, 3) == -1
  • @divTrunc(a, b) + @rem(a, b) == a

For a function that returns a possible error code, use @import("std").math.divTrunc.

See also:

@embedFile

  1. @embedFile(comptime path: []const u8) [X]u8

This function returns a compile time constant fixed-size array with length equal to the byte count of the file given by path. The contents of the array are the contents of the file.

path is absolute or relative to the current file, just like @import.

See also:

@enumToInt

  1. @enumToInt(enum_or_tagged_union: var) var

Converts an enumeration value into its integer tag type. When a tagged union is passed, the tag value is used as the enumeration value.

If there is only one possible enum value, the resut is a comptime_int known at comptime.

See also:

@errorName

  1. @errorName(err: anyerror) []const u8

This function returns the string representation of an error. The string representation of error.OutOfMem is "OutOfMem".

If there are no calls to @errorName in an entire application, or all calls have a compile-time known value for err, then no error name table will be generated.

@errorReturnTrace

  1. @errorReturnTrace() ?*builtin.StackTrace

If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns null.

@errorToInt

  1. @errorToInt(err: var) @IntType(false, @sizeOf(anyerror) * 8)

Supports the following types:

Converts an error to the integer representation of an error.

It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.

See also:

@errSetCast

  1. @errSetCast(comptime T: DestType, value: var) DestType

Converts an error value from one error set to another error set. Attempting to convert an error which is not in the destination error set results in safety-protected Undefined Behavior.

@export

  1. @export(comptime name: []const u8, target: var, linkage: builtin.GlobalLinkage) void

Creates a symbol in the output object file.

This function can be called from a comptime block to conditionally export symbols. When target is a function with the C calling convention and linkage is Strong, this is equivalent to the export keyword used on a function:

test.zig

  1. const builtin = @import("builtin");
  2. comptime {
  3. @export("foo", internalName, builtin.GlobalLinkage.Strong);
  4. }
  5. extern fn internalName() void {}
  1. $ zig build-obj test.zig

This is equivalent to:

test.zig

  1. export fn foo() void {}
  1. $ zig build-obj test.zig

Note that even when using export, @"foo" syntax can be used to choose any string for the symbol name:

test.zig

  1. export fn @"A function name that is a complete sentence."() void {}
  1. $ zig build-obj test.zig

When looking at the resulting object, you can see the symbol is used verbatim:

  1. 00000000000001f0 T A function name that is a complete sentence.

See also:

@fence

  1. @fence(order: AtomicOrder)

The fence function is used to introduce happens-before edges between operations.

AtomicOrder can be found with @import("builtin").AtomicOrder.

See also:

@field

  1. @field(lhs: var, comptime field_name: []const u8) (field)

Performs field access by a compile-time string.

test.zig

  1. const std = @import("std");
  2. const Point = struct {
  3. x: u32,
  4. y: u32
  5. };
  6. test "field access by string" {
  7. const assert = std.debug.assert;
  8. var p = Point {.x = 0, .y = 0};
  9. @field(p, "x") = 4;
  10. @field(p, "y") = @field(p, "x") + 1;
  11. assert(@field(p, "x") == 4);
  12. assert(@field(p, "y") == 5);
  13. }
  1. $ zig test test.zig
  2. 1/1 test "field access by string"...OK
  3. All tests passed.

@fieldParentPtr

  1. @fieldParentPtr(comptime ParentType: type, comptime field_name: []const u8,
  2. field_ptr: *T) *ParentType

Given a pointer to a field, returns the base pointer of a struct.

@floatCast

  1. @floatCast(comptime DestType: type, value: var) DestType

Convert from one float type to another. This cast is safe, but may cause the numeric value to lose precision.

@floatToInt

  1. @floatToInt(comptime DestType: type, float: var) DestType

Converts the integer part of a floating point number to the destination type.

If the integer part of the floating point number cannot fit in the destination type, it invokes safety-checked Undefined Behavior.

See also:

@frame

  1. @frame() *@Frame(func)

This function returns a pointer to the frame for a given function. This type can be implicitly cast to anyframe->T and to anyframe, where T is the return type of the function in scope.

This function does not mark a suspension point, but it does cause the function in scope to become an async function.

@Frame

  1. @Frame(func: var) type

This function returns the frame type of a function. This works for Async Functions as well as any function without a specific calling convention.

This type is suitable to be used as the return type of async which allows one to, for example, heap-allocate an async function frame:

test.zig

  1. const std = @import("std");
  2. test "heap allocated frame" {
  3. const frame = try std.heap.direct_allocator.create(@Frame(func));
  4. frame.* = async func();
  5. }
  6. fn func() void {
  7. suspend;
  8. }
  1. $ zig test test.zig
  2. 1/1 test "heap allocated frame"...OK
  3. All tests passed.

@frameAddress

  1. @frameAddress() usize

This function returns the base pointer of the current stack frame.

The implications of this are target specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.

This function is only valid within function scope.

@frameSize

  1. @frameSize() usize

This is the same as @sizeOf(@Frame(func)), where func may be runtime-known.

This function is typically used in conjunction with @asyncCall.

@hasDecl

  1. @hasDecl(comptime Container: type, comptime name: []const u8) bool

Returns whether or not a struct, enum, or union has a declaration matching name.

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. const Foo = struct {
  4. nope: i32,
  5. pub var blah = "xxx";
  6. const hi = 1;
  7. };
  8. test "@hasDecl" {
  9. assert(@hasDecl(Foo, "blah"));
  10. // Even though `hi` is private, @hasDecl returns true because this test is
  11. // in the same file scope as Foo. It would return false if Foo was declared
  12. // in a different file.
  13. assert(@hasDecl(Foo, "hi"));
  14. // @hasDecl is for declarations; not fields.
  15. assert(!@hasDecl(Foo, "nope"));
  16. assert(!@hasDecl(Foo, "nope1234"));
  17. }
  1. $ zig test test.zig
  2. 1/1 test "@hasDecl"...OK
  3. All tests passed.

See also:

@hasField

  1. @hasField(comptime Container: type, comptime name: []const u8) bool

Returns whether the field name of a struct, union, or enum exists.

The result is a compile time constant.

It does not include functions, variables, or constants.

See also:

@import

  1. @import(comptime path: []u8) type

This function finds a zig file corresponding to path and adds it to the build, if it is not already added.

Zig source files are implicitly structs, with a name equal to the file's basename with the extension truncated. @import returns the struct type corresponding to the file.

Declarations which have the pub keyword may be referenced from a different source file than the one they are declared in.

path can be a relative or absolute path, or it can be the name of a package. If it is a relative path, it is relative to the file that contains the @import function call.

The following packages are always available:

  • @import("std") - Zig Standard Library
  • @import("builtin") - Compiler-provided types and variables. The command zig builtin outputs the source to stdout for reference.

See also:

@inlineCall

  1. @inlineCall(function: X, args: ...) Y

This calls a function, in the same way that invoking an expression with parentheses does:

test.zig

  1. const assert = @import("std").debug.assert;
  2. test "inline function call" {
  3. assert(@inlineCall(add, 3, 9) == 12);
  4. }
  5. fn add(a: i32, b: i32) i32 { return a + b; }
  1. $ zig test test.zig
  2. 1/1 test "inline function call"...OK
  3. All tests passed.

Unlike a normal function call, however, @inlineCall guarantees that the call will be inlined. If the call cannot be inlined, a compile error is emitted.

See also:

@intCast

  1. @intCast(comptime DestType: type, int: var) DestType

Converts an integer to another integer while keeping the same numerical value. Attempting to convert a number which is out of range of the destination type results in safety-protected Undefined Behavior.

@intToEnum

  1. @intToEnum(comptime DestType: type, int_value: @TagType(DestType)) DestType

Converts an integer into an enum value.

Attempting to convert an integer which represents no value in the chosen enum type invokes safety-checked Undefined Behavior.

See also:

@intToError

  1. @intToError(value: @IntType(false, @sizeOf(anyerror) * 8)) anyerror

Converts from the integer representation of an error into The Global Error Set type.

It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.

Attempting to convert an integer that does not correspond to any error results in safety-protected Undefined Behavior.

See also:

@intToFloat

  1. @intToFloat(comptime DestType: type, int: var) DestType

Converts an integer to the closest floating point representation. To convert the other way, use @floatToInt. This cast is always safe.

@intToPtr

  1. @intToPtr(comptime DestType: type, address: usize) DestType

Converts an integer to a pointer. To convert the other way, use @ptrToInt.

If the destination pointer type does not allow address zero and address is zero, this invokes safety-checked Undefined Behavior.

@IntType

  1. @IntType(comptime is_signed: bool, comptime bit_count: u16) type

This function returns an integer type with the given signness and bit count. The maximum bit count for an integer type is 65535.

Deprecated. Use @Type.

@memberCount

  1. @memberCount(comptime T: type) comptime_int

This function returns the number of members in a struct, enum, or union type.

The result is a compile time constant.

It does not include functions, variables, or constants.

@memberName

  1. @memberName(comptime T: type, comptime index: usize) [N]u8

Returns the field name of a struct, union, or enum.

The result is a compile time constant.

It does not include functions, variables, or constants.

@memberType

  1. @memberType(comptime T: type, comptime index: usize) type

Returns the field type of a struct or union.

@memcpy

  1. @memcpy(noalias dest: [*]u8, noalias source: [*]const u8, byte_count: usize)

This function copies bytes from one region of memory to another. dest and source are both pointers and must not overlap.

This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:

  1. for (source[0..byte_count]) |b, i| dest[i] = b;

The optimizer is intelligent enough to turn the above snippet into a memcpy.

There is also a standard library function for this:

  1. const mem = @import("std").mem;
  2. mem.copy(u8, dest[0..byte_count], source[0..byte_count]);

@memset

  1. @memset(dest: [*]u8, c: u8, byte_count: usize)

This function sets a region of memory to c. dest is a pointer.

This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:

  1. for (dest[0..byte_count]) |*b| b.* = c;

The optimizer is intelligent enough to turn the above snippet into a memset.

There is also a standard library function for this:

  1. const mem = @import("std").mem;
  2. mem.set(u8, dest, c);

@mod

  1. @mod(numerator: T, denominator: T) T

Modulus division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0.

  • @mod(-5, 3) == 1
  • @divFloor(a, b) + @mod(a, b) == a

For a function that returns an error code, see @import("std").math.mod.

See also:

@mulWithOverflow

  1. @mulWithOverflow(comptime T: type, a: T, b: T, result: *T) bool

Performs result.* = a * b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@newStackCall

  1. @newStackCall(new_stack: []align(target_stack_align) u8, function: var, args: ...) var

This calls a function, in the same way that invoking an expression with parentheses does. However, instead of using the same stack as the caller, the function uses the stack provided in the new_stack parameter.

The new stack must be aligned to target_stack_align bytes. This is a target-specific number. A safe value that will work on all targets is 16. This value can also be obtained by using @sizeOf on the @Frame type of Async Functions.

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. var new_stack_bytes: [1024]u8 align(16) = undefined;
  4. test "calling a function with a new stack" {
  5. const arg = 1234;
  6. const a = @newStackCall(new_stack_bytes[0..512], targetFunction, arg);
  7. const b = @newStackCall(new_stack_bytes[512..], targetFunction, arg);
  8. _ = targetFunction(arg);
  9. assert(arg == 1234);
  10. assert(a < b);
  11. }
  12. fn targetFunction(x: i32) usize {
  13. assert(x == 1234);
  14. var local_variable: i32 = 42;
  15. const ptr = &local_variable;
  16. ptr.* += 1;
  17. assert(local_variable == 43);
  18. return @ptrToInt(ptr);
  19. }
  1. $ zig test test.zig
  2. 1/1 test "calling a function with a new stack"...OK
  3. All tests passed.

@noInlineCall

  1. @noInlineCall(function: var, args: ...) var

This calls a function, in the same way that invoking an expression with parentheses does:

test.zig

  1. const assert = @import("std").debug.assert;
  2. test "noinline function call" {
  3. assert(@noInlineCall(add, 3, 9) == 12);
  4. }
  5. fn add(a: i32, b: i32) i32 {
  6. return a + b;
  7. }
  1. $ zig test test.zig
  2. 1/1 test "noinline function call"...OK
  3. All tests passed.

Unlike a normal function call, however, @noInlineCall guarantees that the call will not be inlined. If the call must be inlined, a compile error is emitted.

See also:

@OpaqueType

  1. @OpaqueType() type

Creates a new type with an unknown (but non-zero) size and alignment.

This is typically used for type safety when interacting with C code that does not expose struct details. Example:

test.zig

  1. const Derp = @OpaqueType();
  2. const Wat = @OpaqueType();
  3. extern fn bar(d: *Derp) void;
  4. export fn foo(w: *Wat) void {
  5. bar(w);
  6. }
  7. test "call foo" {
  8. foo(undefined);
  9. }
  1. $ zig test test.zig
  2. /home/andy/dev/zig/docgen_tmp/test.zig:6:9: error: expected type '*Derp', found '*Wat'
  3. bar(w);
  4. ^
  5. /home/andy/dev/zig/docgen_tmp/test.zig:6:9: note: pointer type child 'Wat' cannot cast into pointer type child 'Derp'
  6. bar(w);
  7. ^
  8. /home/andy/dev/zig/docgen_tmp/test.zig:6:8: note: referenced here
  9. bar(w);
  10. ^

@panic

  1. @panic(message: []const u8) noreturn

Invokes the panic handler function. By default the panic handler function calls the public panic function exposed in the root source file, or if there is not one specified, invokes the one provided in std/special/panic.zig.

Generally it is better to use @import("std").debug.panic. However, @panic can be useful for 2 scenarios:

  • From library code, calling the programmer's panic function if they exposed one in the root source file.
  • When mixing C and Zig code, calling the canonical panic implementation across multiple .o files.

See also:

@popCount

  1. @popCount(comptime T: type, integer: T)

Counts the number of bits set in an integer.

If integer is known at comptime, the return type is comptime_int. Otherwise, the return type is an unsigned integer with the minimum number of bits that can represent the bit count of the integer type.

See also:

@ptrCast

  1. @ptrCast(comptime DestType: type, value: var) DestType

Converts a pointer of one type to a pointer of another type.

Optional Pointers are allowed. Casting an optional pointer which is null to a non-optional pointer invokes safety-checked Undefined Behavior.

@ptrToInt

  1. @ptrToInt(value: var) usize

Converts value to a usize which is the address of the pointer. value can be one of these types:

  • *T
  • ?*T
  • fn()
  • ?fn()

To convert the other way, use @intToPtr

@rem

  1. @rem(numerator: T, denominator: T) T

Remainder division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0.

  • @rem(-5, 3) == -2
  • @divTrunc(a, b) + @rem(a, b) == a

For a function that returns an error code, see @import("std").math.rem.

See also:

@returnAddress

  1. @returnAddress() usize

This function returns the address of the next machine code instruction that will be executed when the current function returns.

The implications of this are target specific and not consistent across all platforms.

This function is only valid within function scope. If the function gets inlined into a calling function, the returned address will apply to the calling function.

@setAlignStack

  1. @setAlignStack(comptime alignment: u29)

Ensures that a function will have a stack alignment of at least alignment bytes.

@setCold

  1. @setCold(is_cold: bool)

Tells the optimizer that a function is rarely called.

@setEvalBranchQuota

  1. @setEvalBranchQuota(new_quota: usize)

Changes the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.

If the new_quota is smaller than the default quota (1000) or a previously explicitly set quota, it is ignored.

Example:

test.zig

  1. test "foo" {
  2. comptime {
  3. var i = 0;
  4. while (i < 1001) : (i += 1) {}
  5. }
  6. }
  1. $ zig test test.zig
  2. /home/andy/dev/zig/docgen_tmp/test.zig:4:9: error: evaluation exceeded 1000 backwards branches
  3. while (i < 1001) : (i += 1) {}
  4. ^

Now we use @setEvalBranchQuota:

test.zig

  1. test "foo" {
  2. comptime {
  3. @setEvalBranchQuota(1001);
  4. var i = 0;
  5. while (i < 1001) : (i += 1) {}
  6. }
  7. }
  1. $ zig test test.zig
  2. 1/1 test "foo"...OK
  3. All tests passed.

See also:

@setFloatMode

  1. @setFloatMode(mode: @import("builtin").FloatMode)

Sets the floating point mode of the current scope. Possible values are:

  1. pub const FloatMode = enum {
  2. Strict,
  3. Optimized,
  4. };
  • Strict (default) - Floating point operations follow strict IEEE compliance.
  • Optimized - Floating point operations may do all of the following:
    • Assume the arguments and result are not NaN. Optimizations are required to retain defined behavior over NaNs, but the value of the result is undefined.
    • Assume the arguments and result are not +/-Inf. Optimizations are required to retain defined behavior over +/-Inf, but the value of the result is undefined.
    • Treat the sign of a zero argument or result as insignificant.
    • Use the reciprocal of an argument rather than perform division.
    • Perform floating-point contraction (e.g. fusing a multiply followed by an addition into a fused multiply-and-add).
    • Perform algebraically equivalent transformations that may change results in floating point (e.g. reassociate). This is equivalent to -ffast-math in GCC.

The floating point mode is inherited by child scopes, and can be overridden in any scope. You can set the floating point mode in a struct or module scope by using a comptime block.

See also:

@setRuntimeSafety

  1. @setRuntimeSafety(safety_on: bool)

Sets whether runtime safety checks are enabled for the scope that contains the function call.

test.zig

  1. test "@setRuntimeSafety" {
  2. // The builtin applies to the scope that it is called in. So here, integer overflow
  3. // will not be caught in ReleaseFast and ReleaseSmall modes:
  4. // var x: u8 = 255;
  5. // x += 1; // undefined behavior in ReleaseFast/ReleaseSmall modes.
  6. {
  7. // However this block has safety enabled, so safety checks happen here,
  8. // even in ReleaseFast and ReleaseSmall modes.
  9. @setRuntimeSafety(true);
  10. var x: u8 = 255;
  11. x += 1;
  12. {
  13. // The value can be overridden at any scope. So here integer overflow
  14. // would not be caught in any build mode.
  15. @setRuntimeSafety(false);
  16. // var x: u8 = 255;
  17. // x += 1; // undefined behavior in all build modes.
  18. }
  19. }
  20. }
  1. $ zig test test.zig --release-fast
  2. 1/1 test "@setRuntimeSafety"...integer overflow
  3. Tests failed. Use the following command to reproduce the failure:
  4. /home/andy/dev/zig/docgen_tmp/test

Note: it is planned to replace @setRuntimeSafety with @optimizeFor

@shlExact

  1. @shlExact(value: T, shift_amt: Log2T) T

Performs the left shift operation (<<). Caller guarantees that the shift will not shift any 1 bits out.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@shlWithOverflow

  1. @shlWithOverflow(comptime T: type, a: T, shift_amt: Log2T, result: *T) bool

Performs result.* = a << b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@shrExact

  1. @shrExact(value: T, shift_amt: Log2T) T

Performs the right shift operation (>>). Caller guarantees that the shift will not shift any 1 bits out.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@shuffle

  1. @shuffle(comptime E: type, a: @Vector(a_len, E), b: @Vector(b_len, E), comptime mask: @Vector(mask_len, i32)) @Vector(mask_len, E)

Constructs a new vector by selecting elements from a and b based on mask.

Each element in mask selects an element from either a or b. Positive numbers select from a starting at 0. Negative values select from b, starting at -1 and going down. It is recommended to use the ~ operator from indexes from b so that both indexes can start from 0 (i.e. ~i32(0) is -1).

For each element of mask, if it or the selected value from a or b is undefined, then the resulting element is undefined.

a_len and b_len may differ in length. Out-of-bounds element indexes in mask result in compile errors.

If a or b is undefined, it is equivalent to a vector of all undefined with the same length as the other vector. If both vectors are undefined, @shuffle returns a vector with all elements undefined.

E must be an integer, float, pointer, or bool. The mask may be any vector length, and its length determines the result length.

See also:

@sizeOf

  1. @sizeOf(comptime T: type) comptime_int

This function returns the number of bytes it takes to store T in memory. The result is a target-specific compile time constant.

This size may contain padding bytes. If there were two consecutive T in memory, this would be the offset in bytes between element at index 0 and the element at index 1. For integer, consider whether you want to use @sizeOf(T) or @typeInfo(T).Int.bits.

This function measures the size at runtime. For types that are disallowed at runtime, such as comptime_int and type, the result is 0.

See also:

@sliceToBytes

  1. @sliceToBytes(value: var) []u8

Converts a slice or array to a slice of u8. The resulting slice has the same pointer properties as the parameter.

@splat

  1. @splat(comptime len: u32, scalar: var) @Vector(len, @typeOf(scalar))

Produces a vector of length len where each element is the value scalar:

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. test "vector @splat" {
  4. const scalar: u32 = 5;
  5. const result = @splat(4, scalar);
  6. comptime assert(@typeOf(result) == @Vector(4, u32));
  7. assert(std.mem.eql(u32, ([4]u32)(result), [_]u32{ 5, 5, 5, 5 }));
  8. }
  1. $ zig test test.zig
  2. 1/1 test "vector @splat"...OK
  3. All tests passed.

scalar must be an integer, bool, float, or pointer.

See also:

@sqrt

  1. @sqrt(comptime T: type, value: T) T

Performs the square root of a floating point number. Uses a dedicated hardware instruction when available. Supports f16, f32, f64, and f128, as well as vectors.

@sin

  1. @sin(comptime T: type, value: T) T

Sine trigometric function on a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@cos

  1. @cos(comptime T: type, value: T) T

Cosine trigometric function on a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@exp

  1. @exp(comptime T: type, value: T) T

Base-e exponential function on a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@exp2

  1. @exp2(comptime T: type, value: T) T

Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@ln

  1. @ln(comptime T: type, value: T) T

Returns the natural logarithm of a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@log2

  1. @log2(comptime T: type, value: T) T

Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@log10

  1. @log10(comptime T: type, value: T) T

Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@fabs

  1. @fabs(comptime T: type, value: T) T

Returns the absolute value of a floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@floor

  1. @floor(comptime T: type, value: T) T

Returns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@ceil

  1. @ceil(comptime T: type, value: T) T

Returns the largest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@trunc

  1. @trunc(comptime T: type, value: T) T

Rounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@round

  1. @round(comptime T: type, value: T) T

Rounds the given floating point number to an integer, away from zero. Uses a dedicated hardware instruction when available. Currently supports f32 and f64.

@subWithOverflow

  1. @subWithOverflow(comptime T: type, a: T, b: T, result: *T) bool

Performs result.* = a - b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@tagName

  1. @tagName(value: var) []const u8

Converts an enum value or union value to a slice of bytes representing the name.

@TagType

  1. @TagType(T: type) type

For an enum, returns the integer type that is used to store the enumeration value.

For a union, returns the enum type that is used to store the tag value.

@This

  1. @This() type

Returns the innermost struct or union that this function call is inside. This can be useful for an anonymous struct that needs to refer to itself:

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. test "@This()" {
  4. var items = [_]i32{ 1, 2, 3, 4 };
  5. const list = List(i32){ .items = items[0..] };
  6. assert(list.length() == 4);
  7. }
  8. fn List(comptime T: type) type {
  9. return struct {
  10. const Self = @This();
  11. items: []T,
  12. fn length(self: Self) usize {
  13. return self.items.len;
  14. }
  15. };
  16. }
  1. $ zig test test.zig
  2. 1/1 test "@This()"...OK
  3. All tests passed.

When @This() is used at global scope, it returns a reference to the current import. There is a proposal to remove the import type and use an empty struct type instead. See #1047 for details.

@truncate

  1. @truncate(comptime T: type, integer: var) T

This function truncates bits from an integer type, resulting in a smaller or same-sized integer type.

The following produces safety-checked Undefined Behavior:

test.zig

  1. test "integer cast panic" {
  2. var a: u16 = 0xabcd;
  3. var b: u8 = @intCast(u8, a);
  4. }
  1. $ zig test test.zig
  2. 1/1 test "integer cast panic"...integer cast truncated bits
  3. /home/andy/dev/zig/docgen_tmp/test.zig:3:17: 0x2055af in test "integer cast panic" (test)
  4. var b: u8 = @intCast(u8, a);
  5. ^
  6. /home/andy/dev/zig/lib/std/special/test_runner.zig:13:25: 0x2283c1 in std.special.main (test)
  7. if (test_fn.func()) |_| {
  8. ^
  9. /home/andy/dev/zig/lib/std/special/start.zig:204:37: 0x227235 in std.special.posixCallMainAndExit (test)
  10. const result = root.main() catch |err| {
  11. ^
  12. /home/andy/dev/zig/lib/std/special/start.zig:102:5: 0x2270af in std.special._start (test)
  13. @noInlineCall(posixCallMainAndExit);
  14. ^
  15. Tests failed. Use the following command to reproduce the failure:
  16. /home/andy/dev/zig/docgen_tmp/test

However this is well defined and working code:

truncate.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. test "integer truncation" {
  4. var a: u16 = 0xabcd;
  5. var b: u8 = @truncate(u8, a);
  6. assert(b == 0xcd);
  7. }
  1. $ zig test truncate.zig
  2. 1/1 test "integer truncation"...OK
  3. All tests passed.

This function always truncates the significant bits of the integer, regardless of endianness on the target platform.

If T is comptime_int, then this is semantically equivalent to an implicit cast.

@Type

  1. @Type(comptime info: @import("builtin").TypeInfo) type

This function is the inverse of @typeInfo. It reifies type information into a type.

It is available for the following types:

  • type
  • noreturn
  • void
  • bool
  • Integers - The maximum bit count for an integer type is 65535.
  • Floats
  • Pointers
  • comptime_int
  • comptime_float
  • @typeOf(undefined)
  • @typeOf(null)

For these types it is a TODO in the compiler to implement:

  • Array
  • Optional
  • ErrorUnion
  • ErrorSet
  • Enum
  • Opaque
  • FnFrame
  • AnyFrame
  • Vector
  • EnumLiteral

For these types, @Type is not available. There is an open proposal to allow unions and structs.

@typeId

  1. @typeId(comptime T: type) @import("builtin").TypeId

Returns which kind of type something is. Possible values:

  1. pub const TypeId = enum {
  2. Type,
  3. Void,
  4. Bool,
  5. NoReturn,
  6. Int,
  7. Float,
  8. Pointer,
  9. Array,
  10. Struct,
  11. ComptimeFloat,
  12. ComptimeInt,
  13. Undefined,
  14. Null,
  15. Optional,
  16. ErrorUnion,
  17. Error,
  18. Enum,
  19. Union,
  20. Fn,
  21. Block,
  22. BoundFn,
  23. ArgTuple,
  24. Opaque,
  25. };

@typeInfo

  1. @typeInfo(comptime T: type) @import("builtin").TypeInfo

Returns information on the type. Returns a value of the following union:

  1. pub const TypeInfo = union(TypeId) {
  2. Type: void,
  3. Void: void,
  4. Bool: void,
  5. NoReturn: void,
  6. Int: Int,
  7. Float: Float,
  8. Pointer: Pointer,
  9. Array: Array,
  10. Struct: Struct,
  11. ComptimeFloat: void,
  12. ComptimeInt: void,
  13. Undefined: void,
  14. Null: void,
  15. Optional: Optional,
  16. ErrorUnion: ErrorUnion,
  17. ErrorSet: ErrorSet,
  18. Enum: Enum,
  19. Union: Union,
  20. Fn: Fn,
  21. BoundFn: Fn,
  22. ArgTuple: void,
  23. Opaque: void,
  24. Promise: Promise,
  25. Vector: Vector,
  26. EnumLiteral: void,
  27. pub const Int = struct {
  28. is_signed: bool,
  29. bits: comptime_int,
  30. };
  31. pub const Float = struct {
  32. bits: comptime_int,
  33. };
  34. pub const Pointer = struct {
  35. size: Size,
  36. is_const: bool,
  37. is_volatile: bool,
  38. alignment: comptime_int,
  39. child: type,
  40. is_allowzero: bool,
  41. pub const Size = enum {
  42. One,
  43. Many,
  44. Slice,
  45. C,
  46. };
  47. };
  48. pub const Array = struct {
  49. len: comptime_int,
  50. child: type,
  51. };
  52. pub const ContainerLayout = enum {
  53. Auto,
  54. Extern,
  55. Packed,
  56. };
  57. pub const StructField = struct {
  58. name: []const u8,
  59. offset: ?comptime_int,
  60. field_type: type,
  61. };
  62. pub const Struct = struct {
  63. layout: ContainerLayout,
  64. fields: []StructField,
  65. decls: []Declaration,
  66. };
  67. pub const Optional = struct {
  68. child: type,
  69. };
  70. pub const ErrorUnion = struct {
  71. error_set: type,
  72. payload: type,
  73. };
  74. pub const Error = struct {
  75. name: []const u8,
  76. value: comptime_int,
  77. };
  78. pub const ErrorSet = ?[]Error;
  79. pub const EnumField = struct {
  80. name: []const u8,
  81. value: comptime_int,
  82. };
  83. pub const Enum = struct {
  84. layout: ContainerLayout,
  85. tag_type: type,
  86. fields: []EnumField,
  87. decls: []Declaration,
  88. };
  89. pub const UnionField = struct {
  90. name: []const u8,
  91. enum_field: ?EnumField,
  92. field_type: type,
  93. };
  94. pub const Union = struct {
  95. layout: ContainerLayout,
  96. tag_type: ?type,
  97. fields: []UnionField,
  98. decls: []Declaration,
  99. };
  100. pub const CallingConvention = enum {
  101. Unspecified,
  102. C,
  103. Cold,
  104. Naked,
  105. Stdcall,
  106. Async,
  107. };
  108. pub const FnArg = struct {
  109. is_generic: bool,
  110. is_noalias: bool,
  111. arg_type: ?type,
  112. };
  113. pub const Fn = struct {
  114. calling_convention: CallingConvention,
  115. is_generic: bool,
  116. is_var_args: bool,
  117. return_type: ?type,
  118. async_allocator_type: ?type,
  119. args: []FnArg,
  120. };
  121. pub const Promise = struct {
  122. child: ?type,
  123. };
  124. pub const Vector = struct {
  125. len: comptime_int,
  126. child: type,
  127. };
  128. pub const Declaration = struct {
  129. name: []const u8,
  130. is_pub: bool,
  131. data: Data,
  132. pub const Data = union(enum) {
  133. Type: type,
  134. Var: type,
  135. Fn: FnDecl,
  136. pub const FnDecl = struct {
  137. fn_type: type,
  138. inline_type: Inline,
  139. calling_convention: CallingConvention,
  140. is_var_args: bool,
  141. is_extern: bool,
  142. is_export: bool,
  143. lib_name: ?[]const u8,
  144. return_type: type,
  145. arg_names: [][] const u8,
  146. pub const Inline = enum {
  147. Auto,
  148. Always,
  149. Never,
  150. };
  151. };
  152. };
  153. };
  154. };

For structs, unions, enums, and error sets, the fields are guaranteed to be in the same order as declared. For declarations, the order is unspecified.

@typeName

  1. @typeName(T: type) [N]u8

This function returns the string representation of a type, as an array. It is equivalent to a string literal of the type name.

@typeOf

  1. @typeOf(expression) type

This function returns a compile-time constant, which is the type of the expression passed as an argument. The expression is evaluated.

@typeOf guarantees no run-time side-effects within the expression:

test.zig

  1. const std = @import("std");
  2. const assert = std.debug.assert;
  3. test "no runtime side effects" {
  4. var data: i32 = 0;
  5. const T = @typeOf(foo(i32, &data));
  6. comptime assert(T == i32);
  7. assert(data == 0);
  8. }
  9. fn foo(comptime T: type, ptr: *T) T {
  10. ptr.* += 1;
  11. return ptr.*;
  12. }
  1. $ zig test test.zig
  2. 1/1 test "no runtime side effects"...OK
  3. All tests passed.

@unionInit

  1. @unionInit(comptime Union: type, comptime active_field_name: []const u8, init_expr) Union

This is the same thing as union initialization syntax, except that the field name is a comptime-known value rather than an identifier token.

@unionInit forwards its result location to init_expr.

@Vector

  1. @Vector(comptime len: u32, comptime ElemType: type) type

This function returns a vector type for SIMD.

ElemType must be an integer, a float, or a pointer.