原文链接 : http://zeppelin.apache.org/docs/0.7.2/quickstart/tutorial.html
译文链接 : http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030571
本教程将引导您了解Zeppelin的一些基本概念。我们假设你已经安装了Zeppelin。如果没有,请先看这里。
Zeppelin当前的主要后端处理引擎是 Apache Spark。如果您刚刚接触到该系统,您可能希望首先了解如何处理数据以充分利用Zeppelin。
本地文件教程
数据优化
在开始Zeppelin教程之前,您需要下载bank.zip。
首先,将csv格式的数据转换成RDD Bank
对象,运行以下脚本。这也将使用filter
功能删除标题。
- val bankText = sc.textFile("yourPath/bank/bank-full.csv")
- case class Bank(age:Integer, job:String, marital : String, education : String, balance : Integer)
- // split each line, filter out header (starts with "age"), and map it into Bank case class
- val bank = bankText.map(s=>s.split(";")).filter(s=>s(0)!="\"age\"").map(
- s=>Bank(s(0).toInt,
- s(1).replaceAll("\"", ""),
- s(2).replaceAll("\"", ""),
- s(3).replaceAll("\"", ""),
- s(5).replaceAll("\"", "").toInt
- )
- )
- // convert to DataFrame and create temporal table
- bank.toDF().registerTempTable("bank")
数据检索
假设我们想看到年龄分布bank
。为此,运行:
- %sql select age, count(1) from bank where age < 30 group by age order by age
您可以输入框通过更换设置年龄条件30
用${maxAge=30}
。
- %sql select age, count(1) from bank where age < ${maxAge=30} group by age order by age
现在我们要看到具有某种婚姻状况的年龄分布,并添加组合框来选择婚姻状况。跑:
- %sql select age, count(1) from bank where marital="${marital=single,single|divorced|married}" group by age order by age
具有流数据的教程
数据优化
由于本教程基于Twitter的示例tweet流,您必须使用Twitter帐户配置身份验证。要做到这一点,看看Twitter Credential Setup。当您得到API密钥,您应填写证书相关的值(apiKey
,apiSecret
,accessToken
,accessTokenSecret
与下面的脚本您的API密钥)。
这将创建一个Tweet
对象的RDD 并将这些流数据注册为一个表:
- import org.apache.spark.streaming._
- import org.apache.spark.streaming.twitter._
- import org.apache.spark.storage.StorageLevel
- import scala.io.Source
- import scala.collection.mutable.HashMap
- import java.io.File
- import org.apache.log4j.Logger
- import org.apache.log4j.Level
- import sys.process.stringSeqToProcess
- /** Configures the Oauth Credentials for accessing Twitter */
- def configureTwitterCredentials(apiKey: String, apiSecret: String, accessToken: String, accessTokenSecret: String) {
- val configs = new HashMap[String, String] ++= Seq(
- "apiKey" -> apiKey, "apiSecret" -> apiSecret, "accessToken" -> accessToken, "accessTokenSecret" -> accessTokenSecret)
- println("Configuring Twitter OAuth")
- configs.foreach{ case(key, value) =>
- if (value.trim.isEmpty) {
- throw new Exception("Error setting authentication - value for " + key + " not set")
- }
- val fullKey = "twitter4j.oauth." + key.replace("api", "consumer")
- System.setProperty(fullKey, value.trim)
- println("\tProperty " + fullKey + " set as [" + value.trim + "]")
- }
- println()
- }
- // Configure Twitter credentials
- val apiKey = "xxxxxxxxxxxxxxxxxxxxxxxxx"
- val apiSecret = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
- val accessToken = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
- val accessTokenSecret = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
- configureTwitterCredentials(apiKey, apiSecret, accessToken, accessTokenSecret)
- import org.apache.spark.streaming.twitter._
- val ssc = new StreamingContext(sc, Seconds(2))
- val tweets = TwitterUtils.createStream(ssc, None)
- val twt = tweets.window(Seconds(60))
- case class Tweet(createdAt:Long, text:String)
- twt.map(status=>
- Tweet(status.getCreatedAt().getTime()/1000, status.getText())
- ).foreachRDD(rdd=>
- // Below line works only in spark 1.3.0.
- // For spark 1.1.x and spark 1.2.x,
- // use rdd.registerTempTable("tweets") instead.
- rdd.toDF().registerAsTable("tweets")
- )
- twt.print
- ssc.start()
数据检索
对于每个以下脚本,每次单击运行按钮,您将看到不同的结果,因为它是基于实时数据。
我们开始提取包含单词girl的最多10个tweets 。
- %sql select * from tweets where text like '%girl%' limit 10
这次假设我们想看看在过去60秒内每秒创建的tweet有多少。为此,运行:
- %sql select createdAt, count(1) from tweets group by createdAt order by createdAt
您可以在Spark SQL中进行用户定义的功能并使用它们。让我们通过命名函数来尝试sentiment
。该功能将返回参数中的三种态度之一(正,负,中性)。
- def sentiment(s:String) : String = {
- val positive = Array("like", "love", "good", "great", "happy", "cool", "the", "one", "that")
- val negative = Array("hate", "bad", "stupid", "is")
- var st = 0;
- val words = s.split(" ")
- positive.foreach(p =>
- words.foreach(w =>
- if(p==w) st = st+1
- )
- )
- negative.foreach(p=>
- words.foreach(w=>
- if(p==w) st = st-1
- )
- )
- if(st>0)
- "positivie"
- else if(st<0)
- "negative"
- else
- "neutral"
- }
- // Below line works only in spark 1.3.0.
- // For spark 1.1.x and spark 1.2.x,
- // use sqlc.registerFunction("sentiment", sentiment _) instead.
- sqlc.udf.register("sentiment", sentiment _)
要检查人们如何看待使用sentiment
上述功能的女孩,请运行以下操作:
- %sql select sentiment(text), count(1) from tweets where text like '%girl%' group by sentiment(text)