12.3 包裹式选择(LVW)

与过滤式选择不同的是,包裹式选择将后续的学习器也考虑进来作为特征选择的评价准则。因此包裹式选择可以看作是为某种学习器量身定做的特征选择方法,由于在每一轮迭代中,包裹式选择都需要训练学习器,因此在获得较好性能的同时也产生了较大的开销。下面主要介绍一种经典的包裹式特征选择方法 —LVW(Las Vegas Wrapper),它在拉斯维加斯框架下使用随机策略来进行特征子集的搜索。拉斯维加斯?怎么听起来那么耳熟,不是那个声名显赫的赌场吗?歪果仁真会玩。怀着好奇科普一下,结果又顺带了一个赌场:

蒙特卡罗算法:采样越多,越近似最优解,一定会给出解,但给出的解不一定是正确解;拉斯维加斯算法:采样越多,越有机会找到最优解,不一定会给出解,且给出的解一定是正确解。

举个例子,假如筐里有100个苹果,让我每次闭眼拿1个,挑出最大的。于是我随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……我每拿一次,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,但我除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的算法,就属于蒙特卡罗算法——尽量找较好的,但不保证是最好的。

而拉斯维加斯算法,则是另一种情况。假如有一把锁,给我100把钥匙,只有1把是对的。于是我每次随机拿1把钥匙去试,打不开就再换1把。我试的次数越多,打开(正确解)的机会就越大,但在打开之前,那些错的钥匙都是没有用的。这个试钥匙的算法,就是拉斯维加斯的——尽量找最好的,但不保证能找到。

LVW算法的具体流程如下所示,其中比较特别的是停止条件参数T的设置,即在每一轮寻找最优特征子集的过程中,若随机T次仍没找到,算法就会停止,从而保证了算法运行时间的可行性。

4.png