15.2 马尔可夫随机场(MRF)

马尔可夫随机场(Markov Random Field)是一种典型的马尔可夫网,即使用无向边来表达变量间的依赖关系。在马尔可夫随机场中,对于关系图中的一个子集,若任意两结点间都有边连接,则称该子集为一个团;若再加一个结点便不能形成团,则称该子集为极大团。MRF使用势函数来定义多个变量的概率分布函数,其中每个(极大)团对应一个势函数,一般团中的变量关系也体现在它所对应的极大团中,因此常常基于极大团来定义变量的联合概率分布函数。具体而言,若所有变量构成的极大团的集合为C,则MRF的联合概率函数可以定义为:

iwYGh8.png

对于条件独立性,马尔可夫随机场通过分离集来实现条件独立,若A结点集必须经过C结点集才能到达B结点集,则称C为分离集。书上给出了一个简单情形下的条件独立证明过程,十分贴切易懂,此处不再展开。基于分离集的概念,得到了MRF的三个性质:

全局马尔可夫性:给定两个变量子集的分离集,则这两个变量子集条件独立。局部马尔可夫性:给定某变量的邻接变量,则该变量与其它变量条件独立。成对马尔可夫性:给定所有其他变量,两个非邻接变量条件独立。

iwY07q.png

对于MRF中的势函数,势函数主要用于描述团中变量之间的相关关系,且要求为非负函数,直观来看:势函数需要在偏好的变量取值上函数值较大,例如:若x1与x2成正相关,则需要将这种关系反映在势函数的函数值中。一般我们常使用指数函数来定义势函数:

iwY8tf.png