写在前面的话:距离上篇博客竟过去快一个月了,写完神经网络博客正式进入考试模式,几次考试+几篇报告下来弄得心颇不宁静了,今日定下来看到一句鸡血:Tomorrow is another due!也许生活就需要一些deadline~~
上篇主要介绍了神经网络。首先从生物学神经元出发,引出了它的数学抽象模型—MP神经元以及由两层神经元组成的感知机模型,并基于梯度下降的方法描述了感知机模型的权值调整规则。由于简单的感知机不能处理线性不可分的情形,因此接着引入了含隐层的前馈型神经网络,BP神经网络则是其中最为成功的一种学习方法,它使用误差逆传播的方法来逐层调节连接权。最后简单介绍了局部/全局最小以及目前十分火热的深度学习的概念。本篇围绕的核心则是曾经一度取代过神经网络的另一种监督学习算法—支持向量机(Support Vector Machine),简称SVM。
6、支持向量机
支持向量机是一种经典的二分类模型,基本模型定义为特征空间中最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此支持向量机本身可以转化为一个凸二次规划求解的问题。