title: 用 EXPLAIN 查看 MPP 模式查询的执行计划 summary: 了解 TiDB 中 EXPLAIN 语句返回的执行计划信息。

用 EXPLAIN 查看 MPP 模式查询的执行计划

TiDB 支持使用 MPP 模式来执行查询。在 MPP 执行模式下,SQL 优化器会生成 MPP 的执行计划。注意 MPP 模式仅对有 TiFlash 副本的表生效。

本文档使用的示例数据如下:

  1. CREATE TABLE t1 (id int, value int);
  2. INSERT INTO t1 values(1,2),(2,3),(1,3);
  3. ALTER TABLE t1 set tiflash replica 1;
  4. ANALYZE TABLE t1;
  5. SET tidb_allow_mpp = 1;

MPP 查询片段和 MPP 任务

在 MPP 模式下,一个查询在逻辑上会被切分为多个 MPP 查询片段 (query fragment)。示例如下:

  1. EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;

这个查询在 MPP 模式下会包含两个查询片段,一个为一阶段聚合,一个为二阶段聚合(最终聚合)。在查询执行的时候每个查询片段都会被实例化为一个或者多个 MPP 任务。

Exchange 算子

MPP 查询的执行计划中有两个 MPP 特有的 Exchange 算子,分别为 ExchangeReceiver 和 ExchangeSender。ExchangeReceiver 表示从下游查询片段读取数据,ExchangeSender 表示下游查询片段向上游查询片段发送数据。在 MPP 执行模式下,每个 MPP 查询片段的根算子均为 ExchangeSender 算子,即每个查询片段以 ExchangeSender 为界进行划分。一个简单的 MPP 计划如下:

  1. EXPLAIN SELECT COUNT(*) FROM t1 GROUP BY id;
  1. +------------------------------------+---------+-------------------+---------------+----------------------------------------------------+
  2. | id | estRows | task | access object | operator info |
  3. +------------------------------------+---------+-------------------+---------------+----------------------------------------------------+
  4. | TableReader_31 | 2.00 | root | | data:ExchangeSender_30 |
  5. | └─ExchangeSender_30 | 2.00 | batchCop[tiflash] | | ExchangeType: PassThrough |
  6. | └─Projection_26 | 2.00 | batchCop[tiflash] | | Column#4 |
  7. | └─HashAgg_27 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:sum(Column#7)->Column#4 |
  8. | └─ExchangeReceiver_29 | 2.00 | batchCop[tiflash] | | |
  9. | └─ExchangeSender_28 | 2.00 | batchCop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
  10. | └─HashAgg_9 | 2.00 | batchCop[tiflash] | | group by:test.t1.id, funcs:count(1)->Column#7 |
  11. | └─TableFullScan_25 | 3.00 | batchCop[tiflash] | table:t1 | keep order:false |
  12. +------------------------------------+---------+-------------------+---------------+----------------------------------------------------+

以上执行计划中有两个查询片段:

  • [TableFullScan_25, HashAgg_9, ExchangeSender_28] 为第一个查询片段,其主要完成一阶段聚合的计算。
  • [ExchangeReceiver_29, HashAgg_27, Projection_26, ExchangeSender_30] 为第二个查询片段,其主要完成二阶段聚合的计算。

ExchangeSender 算子的 operator info 列输出了 ExchangeType 信息。目前有以下三种 ExchangeType:

  • HashPartition:ExchangeSender 把数据按 Hash 值进行分区之后分发给上游的 MPP 任务的 ExchangeReceiver 算子,通常在 Hash Aggregation 以及 Shuffle Hash Join 算法中使用。
  • Broadcast:ExchangeSender 通过广播的方式把数据分发给上游的 MPP 任务,通常在 Broadcast Join 中使用。
  • PassThrough:ExchangeSender 把数据分发给上游的 MPP Task,与 Broadcast 的区别是此时上游有且仅有一个 MPP 任务,通常用于向 TiDB 返回数据。

上述例子中 ExchangeSender 的 ExchangeType 为 HashPartition 以及 PassThrough,分别对应于 Hash Aggregation 运算以及向 TiDB 返回数据。

另外一个典型的 MPP 应用为 join 运算。TiDB MPP 支持两种类型的 join,分别为:

  • Shuffle Hash Join:join 的 input 通过 HashPartition 的方式 shuffle 数据,上游的 MPP 任务进行分区内的 join。
  • Broadcast Join:join 中的小表以 Broadcast 的方式把数据广播到各个节点,各个节点各自进行 join。

典型的 Shuffle Hash Join 执行计划如下:

  1. SET tidb_opt_broadcast_join=0; SET tidb_broadcast_join_threshold_count=0; SET tidb_broadcast_join_threshold_size=0; EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
  1. +----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
  2. | id | estRows | task | access object | operator info |
  3. +----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
  4. | StreamAgg_14 | 1.00 | root | | funcs:count(1)->Column#7 |
  5. | └─TableReader_48 | 9.00 | root | | data:ExchangeSender_47 |
  6. | └─ExchangeSender_47 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough |
  7. | └─HashJoin_44 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] |
  8. | ├─ExchangeReceiver_19(Build) | 6.00 | cop[tiflash] | | |
  9. | └─ExchangeSender_18 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
  10. | └─Selection_17 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
  11. | └─TableFullScan_16 | 6.00 | cop[tiflash] | table:a | keep order:false |
  12. | └─ExchangeReceiver_23(Probe) | 6.00 | cop[tiflash] | | |
  13. | └─ExchangeSender_22 | 6.00 | cop[tiflash] | | ExchangeType: HashPartition, Hash Cols: test.t1.id |
  14. | └─Selection_21 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
  15. | └─TableFullScan_20 | 6.00 | cop[tiflash] | table:b | keep order:false |
  16. +----------------------------------------+---------+--------------+---------------+----------------------------------------------------+
  17. 12 rows in set (0.00 sec)

以上执行计划中,

  • [TableFullScan_20, Selection_21, ExchangeSender_22] 完成表 b 的数据读取并通过 HashPartition 的方式把数据 shuffle 给上游 MPP 任务。
  • [TableFullScan_16, Selection_17, ExchangeSender_18] 完成表 a 的数据读取并通过 HashPartition 的方式把数据 shuffle 给上游 MPP 任务。
  • [ExchangeReceiver_19, ExchangeReceiver_23, HashJoin_44, ExchangeSender_47] 完成 join 并把数据返回给 TiDB。

典型的 Broadcast Join 执行计划如下:

  1. EXPLAIN SELECT COUNT(*) FROM t1 a JOIN t1 b ON a.id = b.id;
  1. +----------------------------------------+---------+--------------+---------------+------------------------------------------------+
  2. | id | estRows | task | access object | operator info |
  3. +----------------------------------------+---------+--------------+---------------+------------------------------------------------+
  4. | StreamAgg_15 | 1.00 | root | | funcs:count(1)->Column#7 |
  5. | └─TableReader_47 | 9.00 | root | | data:ExchangeSender_46 |
  6. | └─ExchangeSender_46 | 9.00 | cop[tiflash] | | ExchangeType: PassThrough |
  7. | └─HashJoin_43 | 9.00 | cop[tiflash] | | inner join, equal:[eq(test.t1.id, test.t1.id)] |
  8. | ├─ExchangeReceiver_20(Build) | 6.00 | cop[tiflash] | | |
  9. | └─ExchangeSender_19 | 6.00 | cop[tiflash] | | ExchangeType: Broadcast |
  10. | └─Selection_18 | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
  11. | └─TableFullScan_17 | 6.00 | cop[tiflash] | table:a | keep order:false |
  12. | └─Selection_22(Probe) | 6.00 | cop[tiflash] | | not(isnull(test.t1.id)) |
  13. | └─TableFullScan_21 | 6.00 | cop[tiflash] | table:b | keep order:false |
  14. +----------------------------------------+---------+--------------+---------------+------------------------------------------------+

以上执行计划中,

  • [TableFullScan_17, Selection_18, ExchangeSender_19] 从小表(表 a)读数据并广播给大表(表 b)数据所在的各个节点。
  • [TableFullScan_21, Selection_22, ExchangeReceiver_20, HashJoin_43, ExchangeSender_46] 完成 join 并将数据返回给 TiDB。

对 MPP 模式的查询使用 EXPLAIN ANALYZE

EXPLAIN ANALYZE 语句与 EXPLAIN 类似,但还会输出一些运行时的信息。一个简单的 EXPLAIN ANALYZE 输出信息如下:

  1. EXPLAIN ANALYZE SELECT COUNT(*) FROM t1 GROUP BY id;
  1. +------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+
  2. | id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
  3. +------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+
  4. | TableReader_31 | 4.00 | 2 | root | | time:44.5ms, loops:2, cop_task: {num: 1, max: 0s, proc_keys: 0, copr_cache_hit_ratio: 0.00} | data:ExchangeSender_30 | N/A | N/A |
  5. | └─ExchangeSender_30 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | ExchangeType: PassThrough, tasks: [2, 3, 4] | N/A | N/A |
  6. | └─Projection_26 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | Column#4 | N/A | N/A |
  7. | └─HashAgg_27 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:16.5ms, loops:1, threads:1} | group by:test.t1.id, funcs:sum(Column#7)->Column#4 | N/A | N/A |
  8. | └─ExchangeReceiver_29 | 4.00 | 2 | batchCop[tiflash] | | tiflash_task:{time:14.5ms, loops:1, threads:20} | | N/A | N/A |
  9. | └─ExchangeSender_28 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | ExchangeType: HashPartition, Hash Cols: test.t1.id, tasks: [1] | N/A | N/A |
  10. | └─HashAgg_9 | 4.00 | 0 | batchCop[tiflash] | | tiflash_task:{time:9.49ms, loops:0, threads:0} | group by:test.t1.id, funcs:count(1)->Column#7 | N/A | N/A |
  11. | └─TableFullScan_25 | 6.00 | 0 | batchCop[tiflash] | table:t1 | tiflash_task:{time:9.49ms, loops:0, threads:0} | keep order:false | N/A | N/A |
  12. +------------------------------------+---------+---------+-------------------+---------------+---------------------------------------------------------------------------------------------+----------------------------------------------------------------+--------+------+

EXPLAIN 相比,ExchangeSender 的 operator info 中多了 task id 的输出,其记录了该查询片段实例化成的 MPP 任务的任务 ID。此外 MPP 算子中都会有 threads 这一列,这列记录了 MPP 在执行该算子时使用的并发数(如果集群由多个节点组成,该并发数是所有节点并发数相加的结果)。

其他类型查询的执行计划