Loop
Scan
- A general form of recurrence, which can be used for looping.
- Reduction and map (loop over the leading dimensions) are special cases of
scan
. - You
scan
a function along some input sequence, producing an output at each time-step. - The function can see the previous K time-steps of your function.
sum()
could be computed by scanning the z + x(i) function over a list, given an initial state of z=0.- Often a for loop can be expressed as a
scan()
operation, andscan
is the closest that Theano comes to looping. - Advantages of using
scan
over for loops:- Number of iterations to be part of the symbolic graph.
- Minimizes GPU transfers (if GPU is involved).
- Computes gradients through sequential steps.
- Slightly faster than using a for loop in Python with a compiled Theano function.
- Can lower the overall memory usage by detecting the actual amount of memory needed.
The full documentation can be found in the library: Scan.
A good ipython notebook with explanation and more examples.
Scan Example: Computing tanh(x(t).dot(W) + b) elementwise
- import theano
- import theano.tensor as T
- import numpy as np
- # defining the tensor variables
- X = T.matrix("X")
- W = T.matrix("W")
- b_sym = T.vector("b_sym")
- results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
- compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=results)
- # test values
- x = np.eye(2, dtype=theano.config.floatX)
- w = np.ones((2, 2), dtype=theano.config.floatX)
- b = np.ones((2), dtype=theano.config.floatX)
- b[1] = 2
- print(compute_elementwise(x, w, b))
- # comparison with numpy
- print(np.tanh(x.dot(w) + b))
- [[ 0.96402758 0.99505475]
- [ 0.96402758 0.99505475]]
- [[ 0.96402758 0.99505475]
- [ 0.96402758 0.99505475]]
Scan Example: Computing the sequence x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variables
- X = T.vector("X")
- W = T.matrix("W")
- b_sym = T.vector("b_sym")
- U = T.matrix("U")
- Y = T.matrix("Y")
- V = T.matrix("V")
- P = T.matrix("P")
- results, updates = theano.scan(lambda y, p, x_tm1: T.tanh(T.dot(x_tm1, W) + T.dot(y, U) + T.dot(p, V)),
- sequences=[Y, P[::-1]], outputs_info=[X])
- compute_seq = theano.function(inputs=[X, W, Y, U, P, V], outputs=results)
- # test values
- x = np.zeros((2), dtype=theano.config.floatX)
- x[1] = 1
- w = np.ones((2, 2), dtype=theano.config.floatX)
- y = np.ones((5, 2), dtype=theano.config.floatX)
- y[0, :] = -3
- u = np.ones((2, 2), dtype=theano.config.floatX)
- p = np.ones((5, 2), dtype=theano.config.floatX)
- p[0, :] = 3
- v = np.ones((2, 2), dtype=theano.config.floatX)
- print(compute_seq(x, w, y, u, p, v))
- # comparison with numpy
- x_res = np.zeros((5, 2), dtype=theano.config.floatX)
- x_res[0] = np.tanh(x.dot(w) + y[0].dot(u) + p[4].dot(v))
- for i in range(1, 5):
- x_res[i] = np.tanh(x_res[i - 1].dot(w) + y[i].dot(u) + p[4-i].dot(v))
- print(x_res)
- [[-0.99505475 -0.99505475]
- [ 0.96471973 0.96471973]
- [ 0.99998585 0.99998585]
- [ 0.99998771 0.99998771]
- [ 1. 1. ]]
- [[-0.99505475 -0.99505475]
- [ 0.96471973 0.96471973]
- [ 0.99998585 0.99998585]
- [ 0.99998771 0.99998771]
- [ 1. 1. ]]
Scan Example: Computing norms of lines of X
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variable
- X = T.matrix("X")
- results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X])
- compute_norm_lines = theano.function(inputs=[X], outputs=results)
- # test value
- x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
- print(compute_norm_lines(x))
- # comparison with numpy
- print(np.sqrt((x ** 2).sum(1)))
- [ 1. 2. 3. 4. 5. 0.]
- [ 1. 2. 3. 4. 5. 0.]
Scan Example: Computing norms of columns of X
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variable
- X = T.matrix("X")
- results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X.T])
- compute_norm_cols = theano.function(inputs=[X], outputs=results)
- # test value
- x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
- print(compute_norm_cols(x))
- # comparison with numpy
- print(np.sqrt((x ** 2).sum(0)))
- [ 0. 1. 2. 3. 4. 5.]
- [ 0. 1. 2. 3. 4. 5.]
Scan Example: Computing trace of X
- import theano
- import theano.tensor as T
- import numpy as np
- floatX = "float32"
- # define tensor variable
- X = T.matrix("X")
- results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, j] + t_f, floatX),
- sequences=[T.arange(X.shape[0]), T.arange(X.shape[1])],
- outputs_info=np.asarray(0., dtype=floatX))
- result = results[-1]
- compute_trace = theano.function(inputs=[X], outputs=result)
- # test value
- x = np.eye(5, dtype=theano.config.floatX)
- x[0] = np.arange(5, dtype=theano.config.floatX)
- print(compute_trace(x))
- # comparison with numpy
- print(np.diagonal(x).sum())
- 4.0
- 4.0
Scan Example: Computing the sequence x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) + tanh(x(t - 1).dot(W) + b)
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variables
- X = T.matrix("X")
- W = T.matrix("W")
- b_sym = T.vector("b_sym")
- U = T.matrix("U")
- V = T.matrix("V")
- n_sym = T.iscalar("n_sym")
- results, updates = theano.scan(lambda x_tm2, x_tm1: T.dot(x_tm2, U) + T.dot(x_tm1, V) + T.tanh(T.dot(x_tm1, W) + b_sym),
- n_steps=n_sym, outputs_info=[dict(initial=X, taps=[-2, -1])])
- compute_seq2 = theano.function(inputs=[X, U, V, W, b_sym, n_sym], outputs=results)
- # test values
- x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be able to return x[-2]
- x[1, 1] = 1
- w = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
- u = 0.5 * (np.ones((2, 2), dtype=theano.config.floatX) - np.eye(2, dtype=theano.config.floatX))
- v = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
- n = 10
- b = np.ones((2), dtype=theano.config.floatX)
- print(compute_seq2(x, u, v, w, b, n))
- # comparison with numpy
- x_res = np.zeros((10, 2))
- x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1].dot(w) + b)
- x_res[1] = x[1].dot(u) + x_res[0].dot(v) + np.tanh(x_res[0].dot(w) + b)
- x_res[2] = x_res[0].dot(u) + x_res[1].dot(v) + np.tanh(x_res[1].dot(w) + b)
- for i in range(2, 10):
- x_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +
- np.tanh(x_res[i - 1].dot(w) + b))
- print(x_res)
- [[ 1.40514825 1.40514825]
- [ 2.88898899 2.38898899]
- [ 4.34018291 4.34018291]
- [ 6.53463142 6.78463142]
- [ 9.82972243 9.82972243]
- [ 14.22203814 14.09703814]
- [ 20.07439936 20.07439936]
- [ 28.12291843 28.18541843]
- [ 39.1913681 39.1913681 ]
- [ 54.28407732 54.25282732]]
- [[ 1.40514825 1.40514825]
- [ 2.88898899 2.38898899]
- [ 4.34018291 4.34018291]
- [ 6.53463142 6.78463142]
- [ 9.82972243 9.82972243]
- [ 14.22203814 14.09703814]
- [ 20.07439936 20.07439936]
- [ 28.12291843 28.18541843]
- [ 39.1913681 39.1913681 ]
- [ 54.28407732 54.25282732]]
Scan Example: Computing the Jacobian of y = tanh(v.dot(A)) wrt x
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variables
- v = T.vector()
- A = T.matrix()
- y = T.tanh(T.dot(v, A))
- results, updates = theano.scan(lambda i: T.grad(y[i], v), sequences=[T.arange(y.shape[0])])
- compute_jac_t = theano.function([A, v], results, allow_input_downcast=True) # shape (d_out, d_in)
- # test values
- x = np.eye(5, dtype=theano.config.floatX)[0]
- w = np.eye(5, 3, dtype=theano.config.floatX)
- w[2] = np.ones((3), dtype=theano.config.floatX)
- print(compute_jac_t(w, x))
- # compare with numpy
- print(((1 - np.tanh(x.dot(w)) ** 2) * w).T)
- [[ 0.41997434 0. 0.41997434 0. 0. ]
- [ 0. 1. 1. 0. 0. ]
- [ 0. 0. 1. 0. 0. ]]
- [[ 0.41997434 0. 0.41997434 0. 0. ]
- [ 0. 1. 1. 0. 0. ]
- [ 0. 0. 1. 0. 0. ]]
Note that we need to iterate over the indices of y
and not over the elements of y
. The reason is that scan create a placeholder variable for its internal function and this placeholder variable does not have the same dependencies than the variables that will replace it.
Scan Example: Accumulate number of loop during a scan
- import theano
- import theano.tensor as T
- import numpy as np
- # define shared variables
- k = theano.shared(0)
- n_sym = T.iscalar("n_sym")
- results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
- accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)
- k.get_value()
- accumulator(5)
- k.get_value()
Scan Example: Computing tanh(v.dot(W) + b) * d where d is binomial
- import theano
- import theano.tensor as T
- import numpy as np
- # define tensor variables
- X = T.matrix("X")
- W = T.matrix("W")
- b_sym = T.vector("b_sym")
- # define shared random stream
- trng = T.shared_randomstreams.RandomStreams(1234)
- d=trng.binomial(size=W[1].shape)
- results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym) * d, sequences=X)
- compute_with_bnoise = theano.function(inputs=[X, W, b_sym], outputs=results,
- updates=updates, allow_input_downcast=True)
- x = np.eye(10, 2, dtype=theano.config.floatX)
- w = np.ones((2, 2), dtype=theano.config.floatX)
- b = np.ones((2), dtype=theano.config.floatX)
- print(compute_with_bnoise(x, w, b))
- [[ 0.96402758 0. ]
- [ 0. 0.96402758]
- [ 0. 0. ]
- [ 0.76159416 0.76159416]
- [ 0.76159416 0. ]
- [ 0. 0.76159416]
- [ 0. 0.76159416]
- [ 0. 0.76159416]
- [ 0. 0. ]
- [ 0.76159416 0.76159416]]
Note that if you want to use a random variable d
that will not be updated through scan loops, you should pass this variable as a non_sequences
arguments.
Scan Example: Computing pow(A, k)
- import theano
- import theano.tensor as T
- theano.config.warn.subtensor_merge_bug = False
- k = T.iscalar("k")
- A = T.vector("A")
- def inner_fct(prior_result, B):
- return prior_result * B
- # Symbolic description of the result
- result, updates = theano.scan(fn=inner_fct,
- outputs_info=T.ones_like(A),
- non_sequences=A, n_steps=k)
- # Scan has provided us with A ** 1 through A ** k. Keep only the last
- # value. Scan notices this and does not waste memory saving them.
- final_result = result[-1]
- power = theano.function(inputs=[A, k], outputs=final_result,
- updates=updates)
- print(power(range(10), 2))
- [ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
Scan Example: Calculating a Polynomial
- import numpy
- import theano
- import theano.tensor as T
- theano.config.warn.subtensor_merge_bug = False
- coefficients = theano.tensor.vector("coefficients")
- x = T.scalar("x")
- max_coefficients_supported = 10000
- # Generate the components of the polynomial
- full_range=theano.tensor.arange(max_coefficients_supported)
- components, updates = theano.scan(fn=lambda coeff, power, free_var:
- coeff * (free_var ** power),
- outputs_info=None,
- sequences=[coefficients, full_range],
- non_sequences=x)
- polynomial = components.sum()
- calculate_polynomial = theano.function(inputs=[coefficients, x],
- outputs=polynomial)
- test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
- print(calculate_polynomial(test_coeff, 3))
- 19.0
Exercise
Run both examples.
Modify and execute the polynomial example to have the reduction done by scan
.