产品简介
TDengine 是一款开源、高性能、云原生的时序数据库,且针对物联网、车联网、工业互联网、金融、IT 运维等场景进行了优化。TDengine 的代码,包括集群功能,都在 GNU AGPL v3.0 下开源。除核心的时序数据库功能外,TDengine 还提供缓存、数据订阅、流式计算等其它功能以降低系统复杂度及研发和运维成本。
本章节介绍 TDengine 的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对 TDengine 有个整体的了解。
主要功能
TDengine 的主要功能如下:
- 写入数据,支持
- SQL 写入
- 无模式(Schemaless)写入,支持多种标准写入协议
- 与多种第三方工具的无缝集成,它们都可以仅通过配置而无需任何代码即可将数据写入 TDengine
- 查询数据,支持
- 标准 SQL,含嵌套查询
- 时序数据特色函数
- 时序数据特色查询,例如降采样、插值、累加和、时间加权平均、状态窗口、会话窗口等
- 用户自定义函数(UDF)
- 缓存,将每张表的最后一条记录缓存起来,这样无需 Redis 就能对时序数据进行高效处理
- 流式计算(Stream Processing),TDengine 不仅支持连续查询,还支持事件驱动的流式计算,这样在处理时序数据时就无需 Flink 或 Spark 这样流式计算组件
- 数据订阅,应用程序可以订阅一张表或一组表的数据,提供与 Kafka 相同的 API,而且可以指定过滤条件
- 可视化
- 支持与 Grafana 的无缝集成
- 支持与 Google Data Studio 的无缝集成
- 集群
- 集群部署,可以通过增加节点进行水平扩展以提升处理能力
- 可以通过 Kubernetes 部署 TDengine
- 通过多副本提供高可用能力
- 管理
- 工具
- 提供交互式命令行程序(CLI),便于管理集群,检查系统状态,做即席查询
- 提供压力测试工具 taosBenchmark,用于测试 TDengine 的性能
- 编程
更多细节功能,请阅读整个文档。
竞争优势
由于 TDengine 充分利用了时序数据特点,比如结构化、无需事务、很少删除或更新、写多读少等等,因此与其他时序数据库相比,TDengine 有以下特点:
高性能:TDengine 是唯一一个解决了时序数据存储的高基数难题的时序数据库,支持上亿数据采集点,并在数据插入、查询和数据压缩上远胜其它时序数据库。
极简时序数据平台:TDengine 内建缓存、流式计算和数据订阅等功能,为时序数据的处理提供了极简的解决方案,从而大幅降低了业务系统的设计复杂度和运维成本。
云原生:通过原生的分布式设计、数据分片和分区、存算分离、RAFT 协议、Kubernetes 部署和完整的可观测性,TDengine 是一款云原生时序数据库并且能够部署在公有云、私有云和混合云上。
简单易用:对系统管理员来说,TDengine 大幅降低了管理和维护的代价。对开发者来说, TDengine 提供了简单的接口、极简的解决方案和与第三方工具的无缝集成。对数据分析专家来说,TDengine 提供了便捷的数据访问能力。
分析能力:通过超级表、存储计算分离、分区分片、预计算和其它技术,TDengine 能够高效地浏览、格式化和访问数据。
核心开源:TDengine 的核心代码包括集群功能全部在开源协议下公开。全球超过 140k 个运行实例,GitHub Star 20k,且拥有一个活跃的开发者社区。
采用 TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。表现在几个方面:
- 由于其超强性能,它能将系统所需的计算资源和存储资源大幅降低
- 因为支持 SQL,能与众多第三方软件无缝集成,学习迁移成本大幅下降
- 因为是一款极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
技术生态
在整个时序大数据平台中,TDengine 扮演的角色如下:
图 1. TDengine 技术生态图
上图中,左侧是各种数据采集或消息队列,包括 OPC-UA、MQTT、Telegraf、也包括 Kafka,他们的数据将被源源不断的写入到 TDengine。右侧则是可视化、BI 工具、组态软件、应用程序。下侧则是 TDengine 自身提供的命令行程序(CLI)以及可视化管理工具。
典型适用场景
作为一个高性能、分布式、支持 SQL 的时序数据库(Database),TDengine 的典型适用场景包括但不限于 IoT、工业互联网、车联网、IT 运维、能源、金融证券等领域。需要指出的是,TDengine 是针对时序数据场景设计的专用数据库和专用大数据处理工具,因其充分利用了时序大数据的特点,它无法用来处理网络爬虫、微博、微信、电商、ERP、CRM 等通用型数据。下面本文将对适用场景做更多详细的分析。
数据源特点和需求
从数据源角度,设计人员可以从下面几个角度分析 TDengine 在目标应用系统里面的适用性。
数据源特点和需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
---|---|---|---|---|
总体数据量巨大 | √ | TDengine 在容量方面提供出色的水平扩展功能,并且具备匹配高压缩的存储结构,达到业界最优的存储效率。 | ||
数据输入速度偶尔或者持续巨大 | √ | TDengine 的性能大大超过同类产品,可以在同样的硬件环境下持续处理大量的输入数据,并且提供很容易在用户环境里面运行的性能评估工具。 | ||
数据源数目巨大 | √ | TDengine 设计中包含专门针对大量数据源的优化,包括数据的写入和查询,尤其适合高效处理海量(千万或者更多量级)的数据源。 |
系统架构要求
系统架构要求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
---|---|---|---|---|
要求简单可靠的系统架构 | √ | TDengine 的系统架构非常简单可靠,自带消息队列,缓存,流式计算,监控等功能,无需集成额外的第三方产品。 | ||
要求容错和高可靠 | √ | TDengine 的集群功能,自动提供容错灾备等高可靠功能。 | ||
标准化规范 | √ | TDengine 使用标准的 SQL 语言提供主要功能,遵守标准化规范。 |
系统功能需求
系统功能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
---|---|---|---|---|
要求完整的内置数据处理算法 | √ | TDengine 实现了通用的数据处理算法,但是还没有做到妥善处理各行各业的所有需求,因此特殊类型的处理需求还需要在应用层面解决。 | ||
需要大量的交叉查询处理 | √ | 这种类型的处理更多应该用关系型数据库处理,或者应该考虑 TDengine 和关系型数据库配合实现系统功能。 |
系统性能需求
系统性能需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
---|---|---|---|---|
要求较大的总体处理能力 | √ | TDengine 的集群功能可以轻松地让多服务器配合达成处理能力的提升。 | ||
要求高速处理数据 | √ | TDengine 专门为 IoT 优化的存储和数据处理设计,一般可以让系统得到超出同类产品多倍数的处理速度提升。 | ||
要求快速处理小粒度数据 | √ | 这方面 TDengine 性能可以完全对标关系型和 NoSQL 型数据处理系统。 |
系统维护需求
系统维护需求 | 不适用 | 可能适用 | 非常适用 | 简单说明 |
---|---|---|---|---|
要求系统可靠运行 | √ | TDengine 的系统架构非常稳定可靠,日常维护也简单便捷,对维护人员的要求简洁明了,最大程度上杜绝人为错误和事故。 | ||
要求运维学习成本可控 | √ | 同上。 | ||
要求市场有大量人才储备 | √ | TDengine 作为新一代产品,目前人才市场里面有经验的人员还有限。但是学习成本低,我们作为厂家也提供运维的培训和辅助服务。 |