Column and Data Types
SQLAlchemy provides abstractions for most common database data types, and a mechanism for specifying your own custom data types.
The methods and attributes of type objects are rarely used directly. Type objects are supplied to Table
definitions and can be supplied as type hints to functions for occasions where the database driver returns an incorrect type.
>>> users = Table('users', metadata,
... Column('id', Integer, primary_key=True),
... Column('login', String(32))
... )
SQLAlchemy will use the Integer
and String(32)
type information when issuing a CREATE TABLE
statement and will use it again when reading back rows SELECTed
from the database. Functions that accept a type (such as Column()
) will typically accept a type class or instance; Integer
is equivalent to Integer()
with no construction arguments in this case.
Generic Types
Generic types specify a column that can read, write and store a particular type of Python data. SQLAlchemy will choose the best database column type available on the target database when issuing a CREATE TABLE
statement. For complete control over which column type is emitted in CREATE TABLE
, such as VARCHAR
see SQL Standard and Multiple Vendor Types and the other sections of this chapter.
Object Name | Description |
---|---|
A type for bigger | |
A bool datatype. | |
A type for | |
A type for | |
Generic Enum Type. | |
Type representing floating point types, such as | |
A type for | |
A type for | |
A type for large binary byte data. | |
Refers to the return type of the MATCH operator. | |
A type for fixed precision numbers, such as | |
Holds Python objects, which are serialized using pickle. | |
Mark a type as possibly requiring schema-level DDL for usage. | |
A type for smaller | |
The base for all string and character types. | |
A variably sized string type. | |
A type for | |
A variable length Unicode string type. | |
An unbounded-length Unicode string type. |
class sqlalchemy.types.``BigInteger
A type for bigger int
integers.
Typically generates a BIGINT
in DDL, and otherwise acts like a normal Integer
on the Python side.
Class signature
class sqlalchemy.types.BigInteger
(sqlalchemy.types.Integer
)
class sqlalchemy.types.``Boolean
(create_constraint=False, name=None, _create_events=True)
A bool datatype.
Boolean
typically uses BOOLEAN or SMALLINT on the DDL side, and on the Python side deals in True
or False
.
The Boolean
datatype currently has two levels of assertion that the values persisted are simple true/false values. For all backends, only the Python values None
, True
, False
, 1
or 0
are accepted as parameter values. For those backends that don’t support a “native boolean” datatype, an option exists to also create a CHECK constraint on the target column
Changed in version 1.2: the Boolean
datatype now asserts that incoming Python values are already in pure boolean form.
Class signature
class sqlalchemy.types.Boolean
(sqlalchemy.types.Emulated
, sqlalchemy.types.TypeEngine
, sqlalchemy.types.SchemaType
)
method
sqlalchemy.types.Boolean.
__init__
(create_constraint=False, name=None, _create_events=True)Construct a Boolean.
Parameters
create_constraint –
defaults to False. If the boolean is generated as an int/smallint, also create a CHECK constraint on the table that ensures 1 or 0 as a value.
Note
it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the
Boolean.name
parameter or by setting up an appropriate naming convention; see Configuring Constraint Naming Conventions for background.Changed in version 1.4: - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type.
name – if a CHECK constraint is generated, specify the name of the constraint.
method
sqlalchemy.types.Boolean.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
method
sqlalchemy.types.Boolean.
literal_processor
(dialect)Return a conversion function for processing literal values that are to be rendered directly without using binds.
This function is used when the compiler makes use of the “literal_binds” flag, typically used in DDL generation as well as in certain scenarios where backends don’t accept bound parameters.
New in version 0.9.0.
attribute
sqlalchemy.types.Boolean.
python_type
method
sqlalchemy.types.Boolean.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
class sqlalchemy.types.``Date
A type for datetime.date()
objects.
Class signature
class sqlalchemy.types.Date
(sqlalchemy.types._LookupExpressionAdapter
, sqlalchemy.types.TypeEngine
)
method
sqlalchemy.types.Date.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.attribute
sqlalchemy.types.Date.
python_type
class sqlalchemy.types.``DateTime
(timezone=False)
A type for datetime.datetime()
objects.
Date and time types return objects from the Python datetime
module. Most DBAPIs have built in support for the datetime module, with the noted exception of SQLite. In the case of SQLite, date and time types are stored as strings which are then converted back to datetime objects when rows are returned.
For the time representation within the datetime type, some backends include additional options, such as timezone support and fractional seconds support. For fractional seconds, use the dialect-specific datatype, such as TIME
. For timezone support, use at least the TIMESTAMP
datatype, if not the dialect-specific datatype object.
Class signature
class sqlalchemy.types.DateTime
(sqlalchemy.types._LookupExpressionAdapter
, sqlalchemy.types.TypeEngine
)
method
sqlalchemy.types.DateTime.
__init__
(timezone=False)Construct a new
DateTime
.Parameters
timezone – boolean. Indicates that the datetime type should enable timezone support, if available on the base date/time-holding type only. It is recommended to make use of the
TIMESTAMP
datatype directly when using this flag, as some databases include separate generic date/time-holding types distinct from the timezone-capable TIMESTAMP datatype, such as Oracle.
method
sqlalchemy.types.DateTime.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.attribute
sqlalchemy.types.DateTime.
python_type
class sqlalchemy.types.``Enum
(\enums, **kw*)
Generic Enum Type.
The Enum
type provides a set of possible string values which the column is constrained towards.
The Enum
type will make use of the backend’s native “ENUM” type if one is available; otherwise, it uses a VARCHAR datatype. An option also exists to automatically produce a CHECK constraint when the VARCHAR (so called “non-native”) variant is produced; see the Enum.create_constraint
flag.
The Enum
type also provides in-Python validation of string values during both read and write operations. When reading a value from the database in a result set, the string value is always checked against the list of possible values and a LookupError
is raised if no match is found. When passing a value to the database as a plain string within a SQL statement, if the Enum.validate_strings
parameter is set to True, a LookupError
is raised for any string value that’s not located in the given list of possible values; note that this impacts usage of LIKE expressions with enumerated values (an unusual use case).
Changed in version 1.1: the Enum
type now provides in-Python validation of input values as well as on data being returned by the database.
The source of enumerated values may be a list of string values, or alternatively a PEP-435-compliant enumerated class. For the purposes of the Enum
datatype, this class need only provide a __members__
method.
When using an enumerated class, the enumerated objects are used both for input and output, rather than strings as is the case with a plain-string enumerated type:
import enum
class MyEnum(enum.Enum):
one = 1
two = 2
three = 3
t = Table(
'data', MetaData(),
Column('value', Enum(MyEnum))
)
connection.execute(t.insert(), {"value": MyEnum.two})
assert connection.scalar(t.select()) is MyEnum.two
Above, the string names of each element, e.g. “one”, “two”, “three”, are persisted to the database; the values of the Python Enum, here indicated as integers, are not used; the value of each enum can therefore be any kind of Python object whether or not it is persistable.
In order to persist the values and not the names, the Enum.values_callable
parameter may be used. The value of this parameter is a user-supplied callable, which is intended to be used with a PEP-435-compliant enumerated class and returns a list of string values to be persisted. For a simple enumeration that uses string values, a callable such as lambda x: [e.value for e in x]
is sufficient.
New in version 1.1: - support for PEP-435-style enumerated classes.
See also
ENUM
- PostgreSQL-specific type, which has additional functionality.
ENUM
- MySQL-specific type
Class signature
class sqlalchemy.types.Enum
(sqlalchemy.types.Emulated
, sqlalchemy.types.String
, sqlalchemy.types.SchemaType
)
method
sqlalchemy.types.Enum.
__init__
(\enums, **kw*)Construct an enum.
Keyword arguments which don’t apply to a specific backend are ignored by that backend.
Parameters
*enums –
either exactly one PEP-435 compliant enumerated type or one or more string or unicode enumeration labels. If unicode labels are present, the convert_unicode flag is auto-enabled.
New in version 1.1: a PEP-435 style enumerated class may be passed.
convert_unicode –
Enable unicode-aware bind parameter and result-set processing for this Enum’s data. This is set automatically based on the presence of unicode label strings.
Deprecated since version 1.3: The
Enum.convert_unicode
parameter is deprecated and will be removed in a future release. All modern DBAPIs now support Python Unicode directly and this parameter is unnecessary.create_constraint –
defaults to False. When creating a non-native enumerated type, also build a CHECK constraint on the database against the valid values.
Note
it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the
Enum.name
parameter or by setting up an appropriate naming convention; see Configuring Constraint Naming Conventions for background.Changed in version 1.4: - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type.
metadata – Associate this type directly with a
MetaData
object. For types that exist on the target database as an independent schema construct (PostgreSQL), this type will be created and dropped withincreate_all()
anddrop_all()
operations. If the type is not associated with anyMetaData
object, it will associate itself with eachTable
in which it is used, and will be created when any of those individual tables are created, after a check is performed for its existence. The type is only dropped whendrop_all()
is called for thatTable
object’s metadata, however.name – The name of this type. This is required for PostgreSQL and any future supported database which requires an explicitly named type, or an explicitly named constraint in order to generate the type and/or a table that uses it. If a PEP-435 enumerated class was used, its name (converted to lower case) is used by default.
native_enum – Use the database’s native ENUM type when available. Defaults to True. When False, uses VARCHAR + check constraint for all backends. The VARCHAR length can be controlled with
Enum.length
length –
Allows specifying a custom length for the VARCHAR when
Enum.native_enum
is False. By default it uses the length of the longest value.New in version 1.3.16.
schema –
Schema name of this type. For types that exist on the target database as an independent schema construct (PostgreSQL), this parameter specifies the named schema in which the type is present.
Note
The
schema
of theEnum
type does not by default make use of theschema
established on the owningTable
. If this behavior is desired, set theinherit_schema
flag toTrue
.quote – Set explicit quoting preferences for the type’s name.
inherit_schema – When
True
, the “schema” from the owningTable
will be copied to the “schema” attribute of thisEnum
, replacing whatever value was passed for theschema
attribute. This also takes effect when using theTable.to_metadata()
operation.validate_strings –
when True, string values that are being passed to the database in a SQL statement will be checked for validity against the list of enumerated values. Unrecognized values will result in a
LookupError
being raised.New in version 1.1.0b2.
values_callable –
A callable which will be passed the PEP-435 compliant enumerated type, which should then return a list of string values to be persisted. This allows for alternate usages such as using the string value of an enum to be persisted to the database instead of its name.
New in version 1.2.3.
sort_key_function –
a Python callable which may be used as the “key” argument in the Python
sorted()
built-in. The SQLAlchemy ORM requires that primary key columns which are mapped must be sortable in some way. When using an unsortable enumeration object such as a Python 3Enum
object, this parameter may be used to set a default sort key function for the objects. By default, the database value of the enumeration is used as the sorting function.New in version 1.3.8.
method
sqlalchemy.types.Enum.
create
(bind=None, checkfirst=False)inherited from the
SchemaType.create()
method ofSchemaType
Issue CREATE DDL for this type, if applicable.
method
sqlalchemy.types.Enum.
drop
(bind=None, checkfirst=False)inherited from the
SchemaType.drop()
method ofSchemaType
Issue DROP DDL for this type, if applicable.
class sqlalchemy.types.``Float
(precision=None, asdecimal=False, decimal_return_scale=None)
Type representing floating point types, such as FLOAT
or REAL
.
This type returns Python float
objects by default, unless the Float.asdecimal
flag is set to True, in which case they are coerced to decimal.Decimal
objects.
Note
The Float
type is designed to receive data from a database type that is explicitly known to be a floating point type (e.g. FLOAT
, REAL
, others) and not a decimal type (e.g. DECIMAL
, NUMERIC
, others). If the database column on the server is in fact a Numeric type, such as DECIMAL
or NUMERIC
, use the Numeric
type or a subclass, otherwise numeric coercion between float
/Decimal
may or may not function as expected.
Class signature
class sqlalchemy.types.Float
(sqlalchemy.types.Numeric
)
method
sqlalchemy.types.Float.
__init__
(precision=None, asdecimal=False, decimal_return_scale=None)Construct a Float.
Parameters
precision – the numeric precision for use in DDL
CREATE TABLE
.asdecimal – the same flag as that of
Numeric
, but defaults toFalse
. Note that setting this flag toTrue
results in floating point conversion.decimal_return_scale –
Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don’t have a notion of “scale”, so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Note that the MySQL float types, which do include “scale”, will use “scale” as the default for decimal_return_scale, if not otherwise specified.
New in version 0.9.0.
method
sqlalchemy.types.Float.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
class sqlalchemy.types.``Integer
A type for int
integers.
Class signature
class sqlalchemy.types.Integer
(sqlalchemy.types._LookupExpressionAdapter
, sqlalchemy.types.TypeEngine
)
method
sqlalchemy.types.Integer.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.method
sqlalchemy.types.Integer.
literal_processor
(dialect)Return a conversion function for processing literal values that are to be rendered directly without using binds.
This function is used when the compiler makes use of the “literal_binds” flag, typically used in DDL generation as well as in certain scenarios where backends don’t accept bound parameters.
New in version 0.9.0.
attribute
sqlalchemy.types.Integer.
python_type
class sqlalchemy.types.``Interval
(native=True, second_precision=None, day_precision=None)
A type for datetime.timedelta()
objects.
The Interval type deals with datetime.timedelta
objects. In PostgreSQL, the native INTERVAL
type is used; for others, the value is stored as a date which is relative to the “epoch” (Jan. 1, 1970).
Note that the Interval
type does not currently provide date arithmetic operations on platforms which do not support interval types natively. Such operations usually require transformation of both sides of the expression (such as, conversion of both sides into integer epoch values first) which currently is a manual procedure (such as via expression.func
).
Class signature
class sqlalchemy.types.Interval
(sqlalchemy.types.Emulated
, sqlalchemy.types._AbstractInterval
, sqlalchemy.types.TypeDecorator
)
method
sqlalchemy.types.Interval.
__init__
(native=True, second_precision=None, day_precision=None)Construct an Interval object.
Parameters
native – when True, use the actual INTERVAL type provided by the database, if supported (currently PostgreSQL, Oracle). Otherwise, represent the interval data as an epoch value regardless.
second_precision – For native interval types which support a “fractional seconds precision” parameter, i.e. Oracle and PostgreSQL
day_precision – for native interval types which support a “day precision” parameter, i.e. Oracle.
method
sqlalchemy.types.Interval.
adapt_to_emulated
(impltype, \*kw*)Given an impl class, adapt this type to the impl assuming “emulated”.
The impl should also be an “emulated” version of this type, most likely the same class as this type itself.
e.g.: sqltypes.Enum adapts to the Enum class.
method
sqlalchemy.types.Interval.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
attribute
sqlalchemy.types.Interval.
impl
alias of
sqlalchemy.sql.sqltypes.DateTime
attribute
sqlalchemy.types.Interval.
python_type
method
sqlalchemy.types.Interval.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
class sqlalchemy.types.``LargeBinary
(length=None)
A type for large binary byte data.
The LargeBinary
type corresponds to a large and/or unlengthed binary type for the target platform, such as BLOB on MySQL and BYTEA for PostgreSQL. It also handles the necessary conversions for the DBAPI.
Class signature
class sqlalchemy.types.LargeBinary
(sqlalchemy.types._Binary
)
method
sqlalchemy.types.LargeBinary.
__init__
(length=None)Construct a LargeBinary type.
Parameters
length – optional, a length for the column for use in DDL statements, for those binary types that accept a length, such as the MySQL BLOB type.
class sqlalchemy.types.``MatchType
(create_constraint=False, name=None, _create_events=True)
Refers to the return type of the MATCH operator.
As the ColumnOperators.match()
is probably the most open-ended operator in generic SQLAlchemy Core, we can’t assume the return type at SQL evaluation time, as MySQL returns a floating point, not a boolean, and other backends might do something different. So this type acts as a placeholder, currently subclassing Boolean
. The type allows dialects to inject result-processing functionality if needed, and on MySQL will return floating-point values.
New in version 1.0.0.
Class signature
class sqlalchemy.types.MatchType
(sqlalchemy.types.Boolean
)
class sqlalchemy.types.``Numeric
(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)
A type for fixed precision numbers, such as NUMERIC
or DECIMAL
.
This type returns Python decimal.Decimal
objects by default, unless the Numeric.asdecimal
flag is set to False, in which case they are coerced to Python float
objects.
Note
The Numeric
type is designed to receive data from a database type that is explicitly known to be a decimal type (e.g. DECIMAL
, NUMERIC
, others) and not a floating point type (e.g. FLOAT
, REAL
, others). If the database column on the server is in fact a floating-point type, such as FLOAT
or REAL
, use the Float
type or a subclass, otherwise numeric coercion between float
/Decimal
may or may not function as expected.
Note
The Python decimal.Decimal
class is generally slow performing; cPython 3.3 has now switched to use the cdecimal library natively. For older Python versions, the cdecimal
library can be patched into any application where it will replace the decimal
library fully, however this needs to be applied globally and before any other modules have been imported, as follows:
import sys
import cdecimal
sys.modules["decimal"] = cdecimal
Note that the cdecimal
and decimal
libraries are not compatible with each other, so patching cdecimal
at the global level is the only way it can be used effectively with various DBAPIs that hardcode to import the decimal
library.
Class signature
class sqlalchemy.types.Numeric
(sqlalchemy.types._LookupExpressionAdapter
, sqlalchemy.types.TypeEngine
)
method
sqlalchemy.types.Numeric.
__init__
(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)Construct a Numeric.
Parameters
precision – the numeric precision for use in DDL
CREATE TABLE
.scale – the numeric scale for use in DDL
CREATE TABLE
.asdecimal – default True. Return whether or not values should be sent as Python Decimal objects, or as floats. Different DBAPIs send one or the other based on datatypes - the Numeric type will ensure that return values are one or the other across DBAPIs consistently.
decimal_return_scale –
Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don’t have a notion of “scale”, so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Types which do include an explicit “.scale” value, such as the base
Numeric
as well as the MySQL float types, will use the value of “.scale” as the default for decimal_return_scale, if not otherwise specified.New in version 0.9.0.
When using the `Numeric` type, care should be taken to ensure that the asdecimal setting is appropriate for the DBAPI in use - when Numeric applies a conversion from Decimal->float or float-> Decimal, this conversion incurs an additional performance overhead for all result columns received.
DBAPIs that return Decimal natively (e.g. psycopg2) will have better accuracy and higher performance with a setting of `True`, as the native translation to Decimal reduces the amount of floating- point issues at play, and the Numeric type itself doesn’t need to apply any further conversions. However, another DBAPI which returns floats natively *will* incur an additional conversion overhead, and is still subject to floating point data loss - in which case `asdecimal=False` will at least remove the extra conversion overhead.
method
sqlalchemy.types.Numeric.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
method
sqlalchemy.types.Numeric.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.method
sqlalchemy.types.Numeric.
literal_processor
(dialect)Return a conversion function for processing literal values that are to be rendered directly without using binds.
This function is used when the compiler makes use of the “literal_binds” flag, typically used in DDL generation as well as in certain scenarios where backends don’t accept bound parameters.
New in version 0.9.0.
attribute
sqlalchemy.types.Numeric.
python_type
method
sqlalchemy.types.Numeric.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
class sqlalchemy.types.``PickleType
(protocol=4, pickler=None, comparator=None)
Holds Python objects, which are serialized using pickle.
PickleType builds upon the Binary type to apply Python’s pickle.dumps()
to incoming objects, and pickle.loads()
on the way out, allowing any pickleable Python object to be stored as a serialized binary field.
To allow ORM change events to propagate for elements associated with PickleType
, see Mutation Tracking.
Class signature
class sqlalchemy.types.PickleType
(sqlalchemy.types.TypeDecorator
)
method
sqlalchemy.types.PickleType.
__init__
(protocol=4, pickler=None, comparator=None)Construct a PickleType.
Parameters
protocol – defaults to
pickle.HIGHEST_PROTOCOL
.pickler – defaults to cPickle.pickle or pickle.pickle if cPickle is not available. May be any object with pickle-compatible
dumps
andloads
methods.comparator – a 2-arg callable predicate used to compare values of this type. If left as
None
, the Python “equals” operator is used to compare values.
method
sqlalchemy.types.PickleType.
bind_processor
(dialect)Provide a bound value processing function for the given
Dialect
.This is the method that fulfills the
TypeEngine
contract for bound value conversion.TypeDecorator
will wrap a user-defined implementation ofprocess_bind_param()
here.User-defined code can override this method directly, though its likely best to use
process_bind_param()
so that the processing provided byself.impl
is maintained.Parameters
dialect – Dialect instance in use.
This method is the reverse counterpart to the
result_processor()
method of this class.method
sqlalchemy.types.PickleType.
compare_values
(x, y)Given two values, compare them for equality.
By default this calls upon
TypeEngine.compare_values()
of the underlying “impl”, which in turn usually uses the Python equals operator==
.This function is used by the ORM to compare an original-loaded value with an intercepted “changed” value, to determine if a net change has occurred.
attribute
sqlalchemy.types.PickleType.
impl
alias of
sqlalchemy.sql.sqltypes.LargeBinary
method
sqlalchemy.types.PickleType.
result_processor
(dialect, coltype)Provide a result value processing function for the given
Dialect
.This is the method that fulfills the
TypeEngine
contract for result value conversion.TypeDecorator
will wrap a user-defined implementation ofprocess_result_value()
here.User-defined code can override this method directly, though its likely best to use
process_result_value()
so that the processing provided byself.impl
is maintained.Parameters
dialect – Dialect instance in use.
coltype – A SQLAlchemy data type
This method is the reverse counterpart to the [`bind_processor()`](#sqlalchemy.types.PickleType.bind_processor "sqlalchemy.types.PickleType.bind_processor") method of this class.
class sqlalchemy.types.``SchemaType
(name=None, schema=None, metadata=None, inherit_schema=False, quote=None, _create_events=True)
Mark a type as possibly requiring schema-level DDL for usage.
Supports types that must be explicitly created/dropped (i.e. PG ENUM type) as well as types that are complimented by table or schema level constraints, triggers, and other rules.
SchemaType
classes can also be targets for the DDLEvents.before_parent_attach()
and DDLEvents.after_parent_attach()
events, where the events fire off surrounding the association of the type object with a parent Column
.
See also
Class signature
class sqlalchemy.types.SchemaType
(sqlalchemy.sql.expression.SchemaEventTarget
)
method
sqlalchemy.types.SchemaType.
adapt
(impltype, \*kw*)attribute
sqlalchemy.types.SchemaType.
bind
method
sqlalchemy.types.SchemaType.
copy
(\*kw*)method
sqlalchemy.types.SchemaType.
create
(bind=None, checkfirst=False)Issue CREATE DDL for this type, if applicable.
method
sqlalchemy.types.SchemaType.
drop
(bind=None, checkfirst=False)Issue DROP DDL for this type, if applicable.
class sqlalchemy.types.``SmallInteger
A type for smaller int
integers.
Typically generates a SMALLINT
in DDL, and otherwise acts like a normal Integer
on the Python side.
Class signature
class sqlalchemy.types.SmallInteger
(sqlalchemy.types.Integer
)
class sqlalchemy.types.``String
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
The base for all string and character types.
In SQL, corresponds to VARCHAR. Can also take Python unicode objects and encode to the database’s encoding in bind params (and the reverse for result sets.)
The length field is usually required when the String type is used within a CREATE TABLE statement, as VARCHAR requires a length on most databases.
Class signature
class sqlalchemy.types.String
(sqlalchemy.types.Concatenable
, sqlalchemy.types.TypeEngine
)
attribute
sqlalchemy.types.String.
RETURNS_BYTES
= symbol(‘RETURNS_BYTES’)attribute
sqlalchemy.types.String.
RETURNS_CONDITIONAL
= symbol(‘RETURNS_CONDITIONAL’)attribute
sqlalchemy.types.String.
RETURNS_UNICODE
= symbol(‘RETURNS_UNICODE’)attribute
sqlalchemy.types.String.
RETURNS_UNKNOWN
= symbol(‘RETURNS_UNKNOWN’)method
sqlalchemy.types.String.
__init__
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)Create a string-holding type.
Parameters
length – optional, a length for the column for use in DDL and CAST expressions. May be safely omitted if no
CREATE TABLE
will be issued. Certain databases may require alength
for use in DDL, and will raise an exception when theCREATE TABLE
DDL is issued if aVARCHAR
with no length is included. Whether the value is interpreted as bytes or characters is database specific.collation –
Optional, a column-level collation for use in DDL and CAST expressions. Renders using the COLLATE keyword supported by SQLite, MySQL, and PostgreSQL. E.g.:
>>> from sqlalchemy import cast, select, String
>>> print(select(cast('some string', String(collation='utf8'))))
SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1
convert_unicode –
When set to
True
, theString
type will assume that input is to be passed as Python Unicode objects under Python 2, and results returned as Python Unicode objects. In the rare circumstance that the DBAPI does not support Python unicode under Python 2, SQLAlchemy will use its own encoder/decoder functionality on strings, referring to the value of thecreate_engine.encoding
parameter parameter passed tocreate_engine()
as the encoding.Deprecated since version 1.3: The
String.convert_unicode
parameter is deprecated and will be removed in a future release. All modern DBAPIs now support Python Unicode directly and this parameter is unnecessary.For the extremely rare case that Python Unicode is to be encoded/decoded by SQLAlchemy on a backend that does natively support Python Unicode, the string value
"force"
can be passed here which will cause SQLAlchemy’s encode/decode services to be used unconditionally.Note
SQLAlchemy’s unicode-conversion flags and features only apply to Python 2; in Python 3, all string objects are Unicode objects. For this reason, as well as the fact that virtually all modern DBAPIs now support Unicode natively even under Python 2, the
String.convert_unicode
flag is inherently a legacy feature.Note
In the vast majority of cases, the
Unicode
orUnicodeText
datatypes should be used for aColumn
that expects to store non-ascii data. These datatypes will ensure that the correct types are used on the database side as well as set up the correct Unicode behaviors under Python 2.See also
create_engine.convert_unicode
-Engine
-wide parameterunicode_error –
Optional, a method to use to handle Unicode conversion errors. Behaves like the
errors
keyword argument to the standard library’sstring.decode()
functions, requires thatString.convert_unicode
is set to"force"
Deprecated since version 1.3: The
String.unicode_errors
parameter is deprecated and will be removed in a future release. This parameter is unnecessary for modern Python DBAPIs and degrades performance significantly.
method
sqlalchemy.types.String.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
method
sqlalchemy.types.String.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.method
sqlalchemy.types.String.
literal_processor
(dialect)Return a conversion function for processing literal values that are to be rendered directly without using binds.
This function is used when the compiler makes use of the “literal_binds” flag, typically used in DDL generation as well as in certain scenarios where backends don’t accept bound parameters.
New in version 0.9.0.
attribute
sqlalchemy.types.String.
python_type
method
sqlalchemy.types.String.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
class sqlalchemy.types.``Text
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
A variably sized string type.
In SQL, usually corresponds to CLOB or TEXT. Can also take Python unicode objects and encode to the database’s encoding in bind params (and the reverse for result sets.) In general, TEXT objects do not have a length; while some databases will accept a length argument here, it will be rejected by others.
Class signature
class sqlalchemy.types.Text
(sqlalchemy.types.String
)
class sqlalchemy.types.``Time
(timezone=False)
A type for datetime.time()
objects.
Class signature
class sqlalchemy.types.Time
(sqlalchemy.types._LookupExpressionAdapter
, sqlalchemy.types.TypeEngine
)
method
sqlalchemy.types.Time.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.attribute
sqlalchemy.types.Time.
python_type
class sqlalchemy.types.``Unicode
(length=None, \*kwargs*)
A variable length Unicode string type.
The Unicode
type is a String
subclass that assumes input and output as Python unicode
data, and in that regard is equivalent to the usage of the convert_unicode
flag with the String
type. However, unlike plain String
, it also implies an underlying column type that is explicitly supporting of non-ASCII data, such as NVARCHAR
on Oracle and SQL Server. This can impact the output of CREATE TABLE
statements and CAST
functions at the dialect level, and can also affect the handling of bound parameters in some specific DBAPI scenarios.
The encoding used by the Unicode
type is usually determined by the DBAPI itself; most modern DBAPIs feature support for Python unicode
objects as bound values and result set values, and the encoding should be configured as detailed in the notes for the target DBAPI in the Dialects section.
For those DBAPIs which do not support, or are not configured to accommodate Python unicode
objects directly, SQLAlchemy does the encoding and decoding outside of the DBAPI. The encoding in this scenario is determined by the encoding
flag passed to create_engine()
.
When using the Unicode
type, it is only appropriate to pass Python unicode
objects, and not plain str
. If a plain str
is passed under Python 2, a warning is emitted. If you notice your application emitting these warnings but you’re not sure of the source of them, the Python warnings
filter, documented at http://docs.python.org/library/warnings.html, can be used to turn these warnings into exceptions which will illustrate a stack trace:
import warnings
warnings.simplefilter('error')
For an application that wishes to pass plain bytestrings and Python unicode
objects to the Unicode
type equally, the bytestrings must first be decoded into unicode. The recipe at Coercing Encoded Strings to Unicode illustrates how this is done.
See also
UnicodeText
- unlengthed textual counterpart to Unicode
.
Class signature
class sqlalchemy.types.Unicode
(sqlalchemy.types.String
)
method
sqlalchemy.types.Unicode.
__init__
(length=None, \*kwargs*)Create a
Unicode
object.Parameters are the same as that of
String
, with the exception thatconvert_unicode
defaults toTrue
.
class sqlalchemy.types.``UnicodeText
(length=None, \*kwargs*)
An unbounded-length Unicode string type.
See Unicode
for details on the unicode behavior of this object.
Like Unicode
, usage the UnicodeText
type implies a unicode-capable type being used on the backend, such as NCLOB
, NTEXT
.
Class signature
class sqlalchemy.types.UnicodeText
(sqlalchemy.types.Text
)
method
sqlalchemy.types.UnicodeText.
__init__
(length=None, \*kwargs*)Create a Unicode-converting Text type.
Parameters are the same as that of
TextClause
, with the exception thatconvert_unicode
defaults toTrue
.
SQL Standard and Multiple Vendor Types
This category of types refers to types that are either part of the SQL standard, or are potentially found within a subset of database backends. Unlike the “generic” types, the SQL standard/multi-vendor types have no guarantee of working on all backends, and will only work on those backends that explicitly support them by name. That is, the type will always emit its exact name in DDL with CREATE TABLE
is issued.
Object Name | Description |
---|---|
Represent a SQL Array type. | |
The SQL BIGINT type. | |
The SQL BINARY type. | |
The SQL BLOB type. | |
The SQL BOOLEAN type. | |
The SQL CHAR type. | |
The CLOB type. | |
The SQL DATE type. | |
The SQL DATETIME type. | |
The SQL DECIMAL type. | |
The SQL FLOAT type. | |
alias of | |
The SQL INT or INTEGER type. | |
Represent a SQL JSON type. | |
The SQL NCHAR type. | |
The SQL NUMERIC type. | |
The SQL NVARCHAR type. | |
The SQL REAL type. | |
The SQL SMALLINT type. | |
The SQL TEXT type. | |
The SQL TIME type. | |
The SQL TIMESTAMP type. | |
The SQL VARBINARY type. | |
The SQL VARCHAR type. |
class sqlalchemy.types.``ARRAY
(item_type, as_tuple=False, dimensions=None, zero_indexes=False)
Represent a SQL Array type.
Note
This type serves as the basis for all ARRAY operations. However, currently only the PostgreSQL backend has support for SQL arrays in SQLAlchemy. It is recommended to use the PostgreSQL-specific sqlalchemy.dialects.postgresql.ARRAY
type directly when using ARRAY types with PostgreSQL, as it provides additional operators specific to that backend.
ARRAY
is part of the Core in support of various SQL standard functions such as array_agg
which explicitly involve arrays; however, with the exception of the PostgreSQL backend and possibly some third-party dialects, no other SQLAlchemy built-in dialect has support for this type.
An ARRAY
type is constructed given the “type” of element:
mytable = Table("mytable", metadata,
Column("data", ARRAY(Integer))
)
The above type represents an N-dimensional array, meaning a supporting backend such as PostgreSQL will interpret values with any number of dimensions automatically. To produce an INSERT construct that passes in a 1-dimensional array of integers:
connection.execute(
mytable.insert(),
data=[1,2,3]
)
The ARRAY
type can be constructed given a fixed number of dimensions:
mytable = Table("mytable", metadata,
Column("data", ARRAY(Integer, dimensions=2))
)
Sending a number of dimensions is optional, but recommended if the datatype is to represent arrays of more than one dimension. This number is used:
When emitting the type declaration itself to the database, e.g.
INTEGER[][]
When translating Python values to database values, and vice versa, e.g. an ARRAY of
Unicode
objects uses this number to efficiently access the string values inside of array structures without resorting to per-row type inspectionWhen used with the Python
getitem
accessor, the number of dimensions serves to define the kind of type that the[]
operator should return, e.g. for an ARRAY of INTEGER with two dimensions:>>> expr = table.c.column[5] # returns ARRAY(Integer, dimensions=1)
>>> expr = expr[6] # returns Integer
For 1-dimensional arrays, an ARRAY
instance with no dimension parameter will generally assume single-dimensional behaviors.
SQL expressions of type ARRAY
have support for “index” and “slice” behavior. The Python []
operator works normally here, given integer indexes or slices. Arrays default to 1-based indexing. The operator produces binary expression constructs which will produce the appropriate SQL, both for SELECT statements:
select(mytable.c.data[5], mytable.c.data[2:7])
as well as UPDATE statements when the Update.values()
method is used:
mytable.update().values({
mytable.c.data[5]: 7,
mytable.c.data[2:7]: [1, 2, 3]
})
The ARRAY
type also provides for the operators Comparator.any()
and Comparator.all()
. The PostgreSQL-specific version of ARRAY
also provides additional operators.
New in version 1.1.0.
See also
sqlalchemy.dialects.postgresql.ARRAY
Class signature
class sqlalchemy.types.ARRAY
(sqlalchemy.sql.expression.SchemaEventTarget
, sqlalchemy.types.Indexable
, sqlalchemy.types.Concatenable
, sqlalchemy.types.TypeEngine
)
class
Comparator
(expr)Define comparison operations for
ARRAY
.More operators are available on the dialect-specific form of this type. See
Comparator
.Class signature
class
sqlalchemy.types.ARRAY.Comparator
(sqlalchemy.types.Comparator
,sqlalchemy.types.Comparator
)method
sqlalchemy.types.ARRAY.Comparator.
all
(other, operator=None)Return
other operator ALL (array)
clause.Argument places are switched, because ALL requires array expression to be on the right hand-side.
E.g.:
from sqlalchemy.sql import operators
conn.execute(
select(table.c.data).where(
table.c.data.all(7, operator=operators.lt)
)
)
Parameters
other – expression to be compared
operator – an operator object from the
sqlalchemy.sql.operators
package, defaults toeq()
.
See also
method
sqlalchemy.types.ARRAY.Comparator.
any
(other, operator=None)Return
other operator ANY (array)
clause.Argument places are switched, because ANY requires array expression to be on the right hand-side.
E.g.:
from sqlalchemy.sql import operators
conn.execute(
select(table.c.data).where(
table.c.data.any(7, operator=operators.lt)
)
)
Parameters
other – expression to be compared
operator – an operator object from the
sqlalchemy.sql.operators
package, defaults toeq()
.
See also
method
sqlalchemy.types.ARRAY.Comparator.
contains
(\arg, **kw*)Implement the ‘contains’ operator.
Produces a LIKE expression that tests against a match for the middle of a string value:
column LIKE '%' || <other> || '%'
E.g.:
stmt = select(sometable).\
where(sometable.c.column.contains("foobar"))
Since the operator uses
LIKE
, wildcard characters"%"
and"_"
that are present inside the <other> expression will behave like wildcards as well. For literal string values, theColumnOperators.contains.autoescape
flag may be set toTrue
to apply escaping to occurrences of these characters within the string value so that they match as themselves and not as wildcard characters. Alternatively, theColumnOperators.contains.escape
parameter will establish a given character as an escape character which can be of use when the target expression is not a literal string.Parameters
other – expression to be compared. This is usually a plain string value, but can also be an arbitrary SQL expression. LIKE wildcard characters
%
and_
are not escaped by default unless theColumnOperators.contains.autoescape
flag is set to True.autoescape –
boolean; when True, establishes an escape character within the LIKE expression, then applies it to all occurrences of
"%"
,"_"
and the escape character itself within the comparison value, which is assumed to be a literal string and not a SQL expression.An expression such as:
somecolumn.contains("foo%bar", autoescape=True)
Will render as:
somecolumn LIKE '%' || :param || '%' ESCAPE '/'
With the value of
:param
as"foo/%bar"
.escape –
a character which when given will render with the
ESCAPE
keyword to establish that character as the escape character. This character can then be placed preceding occurrences of%
and_
to allow them to act as themselves and not wildcard characters.An expression such as:
somecolumn.contains("foo/%bar", escape="^")
Will render as:
somecolumn LIKE '%' || :param || '%' ESCAPE '^'
The parameter may also be combined with
ColumnOperators.contains.autoescape
:somecolumn.contains("foo%bar^bat", escape="^", autoescape=True)
Where above, the given literal parameter will be converted to
"foo^%bar^^bat"
before being passed to the database.
See also
method
sqlalchemy.types.ARRAY.
__init__
(item_type, as_tuple=False, dimensions=None, zero_indexes=False)Construct an
ARRAY
.E.g.:
Column('myarray', ARRAY(Integer))
Arguments are:
Parameters
item_type – The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like
INTEGER[][]
, are constructed asARRAY(Integer)
, not asARRAY(ARRAY(Integer))
or such.as_tuple=False – Specify whether return results should be converted to tuples from lists. This parameter is not generally needed as a Python list corresponds well to a SQL array.
dimensions – if non-None, the ARRAY will assume a fixed number of dimensions. This impacts how the array is declared on the database, how it goes about interpreting Python and result values, as well as how expression behavior in conjunction with the “getitem” operator works. See the description at
ARRAY
for additional detail.zero_indexes=False – when True, index values will be converted between Python zero-based and SQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database.
attribute
sqlalchemy.types.ARRAY.
comparator_factory
alias of
sqlalchemy.sql.sqltypes.ARRAY.Comparator
method
sqlalchemy.types.ARRAY.
compare_values
(x, y)Compare two values for equality.
attribute
sqlalchemy.types.ARRAY.
hashable
Flag, if False, means values from this type aren’t hashable.
Used by the ORM when uniquing result lists.
attribute
sqlalchemy.types.ARRAY.
python_type
attribute
sqlalchemy.types.ARRAY.
zero_indexes
= FalseIf True, Python zero-based indexes should be interpreted as one-based on the SQL expression side.
class sqlalchemy.types.``BIGINT
The SQL BIGINT type.
Class signature
class sqlalchemy.types.BIGINT
(sqlalchemy.types.BigInteger
)
class sqlalchemy.types.``BINARY
(length=None)
The SQL BINARY type.
Class signature
class sqlalchemy.types.BINARY
(sqlalchemy.types._Binary
)
class sqlalchemy.types.``BLOB
(length=None)
The SQL BLOB type.
Class signature
class sqlalchemy.types.BLOB
(sqlalchemy.types.LargeBinary
)
class sqlalchemy.types.``BOOLEAN
(create_constraint=False, name=None, _create_events=True)
The SQL BOOLEAN type.
Class signature
class sqlalchemy.types.BOOLEAN
(sqlalchemy.types.Boolean
)
class sqlalchemy.types.``CHAR
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
The SQL CHAR type.
Class signature
class sqlalchemy.types.CHAR
(sqlalchemy.types.String
)
class sqlalchemy.types.``CLOB
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
The CLOB type.
This type is found in Oracle and Informix.
Class signature
class sqlalchemy.types.CLOB
(sqlalchemy.types.Text
)
class sqlalchemy.types.``DATE
The SQL DATE type.
Class signature
class sqlalchemy.types.DATE
(sqlalchemy.types.Date
)
class sqlalchemy.types.``DATETIME
(timezone=False)
The SQL DATETIME type.
Class signature
class sqlalchemy.types.DATETIME
(sqlalchemy.types.DateTime
)
class sqlalchemy.types.``DECIMAL
(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)
The SQL DECIMAL type.
Class signature
class sqlalchemy.types.DECIMAL
(sqlalchemy.types.Numeric
)
class sqlalchemy.types.``FLOAT
(precision=None, asdecimal=False, decimal_return_scale=None)
The SQL FLOAT type.
Class signature
class sqlalchemy.types.FLOAT
(sqlalchemy.types.Float
)
attribute sqlalchemy.types..
sqlalchemy.types.``INT
alias of sqlalchemy.sql.sqltypes.INTEGER
class sqlalchemy.types.``JSON
(none_as_null=False)
Represent a SQL JSON type.
Note
JSON
is provided as a facade for vendor-specific JSON types. Since it supports JSON SQL operations, it only works on backends that have an actual JSON type, currently:
PostgreSQL - see
sqlalchemy.dialects.postgresql.JSON
andsqlalchemy.dialects.postgresql.JSONB
for backend-specific notesMySQL - see
sqlalchemy.dialects.mysql.JSON
for backend-specific notesSQLite as of version 3.9 - see
sqlalchemy.dialects.sqlite.JSON
for backend-specific notesMicrosoft SQL Server 2016 and later - see
sqlalchemy.dialects.mssql.JSON
for backend-specific notes
JSON
is part of the Core in support of the growing popularity of native JSON datatypes.
The JSON
type stores arbitrary JSON format data, e.g.:
data_table = Table('data_table', metadata,
Column('id', Integer, primary_key=True),
Column('data', JSON)
)
with engine.connect() as conn:
conn.execute(
data_table.insert(),
data = {"key1": "value1", "key2": "value2"}
)
JSON-Specific Expression Operators
The JSON
datatype provides these additional SQL operations:
Keyed index operations:
data_table.c.data['some key']
Integer index operations:
data_table.c.data[3]
Path index operations:
data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')]
Data casters for specific JSON element types, subsequent to an index or path operation being invoked:
data_table.c.data["some key"].as_integer()
New in version 1.3.11.
Additional operations may be available from the dialect-specific versions of JSON
, such as sqlalchemy.dialects.postgresql.JSON
and sqlalchemy.dialects.postgresql.JSONB
which both offer additional PostgreSQL-specific operations.
Casting JSON Elements to Other Types
Index operations, i.e. those invoked by calling upon the expression using the Python bracket operator as in some_column['some key']
, return an expression object whose type defaults to JSON
by default, so that further JSON-oriented instructions may be called upon the result type. However, it is likely more common that an index operation is expected to return a specific scalar element, such as a string or integer. In order to provide access to these elements in a backend-agnostic way, a series of data casters are provided:
Comparator.as_string()
- return the element as a stringComparator.as_boolean()
- return the element as a booleanComparator.as_float()
- return the element as a floatComparator.as_integer()
- return the element as an integer
These data casters are implemented by supporting dialects in order to assure that comparisons to the above types will work as expected, such as:
# integer comparison
data_table.c.data["some_integer_key"].as_integer() == 5
# boolean comparison
data_table.c.data["some_boolean"].as_boolean() == True
New in version 1.3.11: Added type-specific casters for the basic JSON data element types.
Note
The data caster functions are new in version 1.3.11, and supersede the previous documented approaches of using CAST; for reference, this looked like:
from sqlalchemy import cast, type_coerce
from sqlalchemy import String, JSON
cast(
data_table.c.data['some_key'], String
) == type_coerce(55, JSON)
The above case now works directly as:
data_table.c.data['some_key'].as_integer() == 5
For details on the previous comparison approach within the 1.3.x series, see the documentation for SQLAlchemy 1.2 or the included HTML files in the doc/ directory of the version’s distribution.
Detecting Changes in JSON columns when using the ORM
The JSON
type, when used with the SQLAlchemy ORM, does not detect in-place mutations to the structure. In order to detect these, the sqlalchemy.ext.mutable
extension must be used. This extension will allow “in-place” changes to the datastructure to produce events which will be detected by the unit of work. See the example at HSTORE
for a simple example involving a dictionary.
Support for JSON null vs. SQL NULL
When working with NULL values, the JSON
type recommends the use of two specific constants in order to differentiate between a column that evaluates to SQL NULL, e.g. no value, vs. the JSON-encoded string of "null"
. To insert or select against a value that is SQL NULL, use the constant null()
:
from sqlalchemy import null
conn.execute(table.insert(), json_value=null())
To insert or select against a value that is JSON "null"
, use the constant JSON.NULL
:
conn.execute(table.insert(), json_value=JSON.NULL)
The JSON
type supports a flag JSON.none_as_null
which when set to True will result in the Python constant None
evaluating to the value of SQL NULL, and when set to False results in the Python constant None
evaluating to the value of JSON "null"
. The Python value None
may be used in conjunction with either JSON.NULL
and null()
in order to indicate NULL values, but care must be taken as to the value of the JSON.none_as_null
in these cases.
Customizing the JSON Serializer
The JSON serializer and deserializer used by JSON
defaults to Python’s json.dumps
and json.loads
functions; in the case of the psycopg2 dialect, psycopg2 may be using its own custom loader function.
In order to affect the serializer / deserializer, they are currently configurable at the create_engine()
level via the create_engine.json_serializer
and create_engine.json_deserializer
parameters. For example, to turn off ensure_ascii
:
engine = create_engine(
"sqlite://",
json_serializer=lambda obj: json.dumps(obj, ensure_ascii=False))
Changed in version 1.3.7: SQLite dialect’s json_serializer
and json_deserializer
parameters renamed from _json_serializer
and _json_deserializer
.
See also
sqlalchemy.dialects.postgresql.JSON
sqlalchemy.dialects.postgresql.JSONB
sqlalchemy.dialects.mysql.JSON
sqlalchemy.dialects.sqlite.JSON
New in version 1.1.
Class signature
class sqlalchemy.types.JSON
(sqlalchemy.types.Indexable
, sqlalchemy.types.TypeEngine
)
class
Comparator
(expr)Define comparison operations for
JSON
.Class signature
class
sqlalchemy.types.JSON.Comparator
(sqlalchemy.types.Comparator
,sqlalchemy.types.Comparator
)method
sqlalchemy.types.JSON.Comparator.
as_boolean
()Cast an indexed value as boolean.
e.g.:
stmt = select(
mytable.c.json_column['some_data'].as_boolean()
).where(
mytable.c.json_column['some_data'].as_boolean() == True
)
New in version 1.3.11.
method
sqlalchemy.types.JSON.Comparator.
as_float
()Cast an indexed value as float.
e.g.:
stmt = select(
mytable.c.json_column['some_data'].as_float()
).where(
mytable.c.json_column['some_data'].as_float() == 29.75
)
New in version 1.3.11.
method
sqlalchemy.types.JSON.Comparator.
as_integer
()Cast an indexed value as integer.
e.g.:
stmt = select(
mytable.c.json_column['some_data'].as_integer()
).where(
mytable.c.json_column['some_data'].as_integer() == 5
)
New in version 1.3.11.
method
sqlalchemy.types.JSON.Comparator.
as_json
()Cast an indexed value as JSON.
e.g.:
stmt = select(mytable.c.json_column['some_data'].as_json())
This is typically the default behavior of indexed elements in any case.
Note that comparison of full JSON structures may not be supported by all backends.
New in version 1.3.11.
method
sqlalchemy.types.JSON.Comparator.
as_numeric
(precision, scale, asdecimal=True)Cast an indexed value as numeric/decimal.
e.g.:
stmt = select(
mytable.c.json_column['some_data'].as_numeric(10, 6)
).where(
mytable.c.
json_column['some_data'].as_numeric(10, 6) == 29.75
)
New in version 1.4.0b2.
method
sqlalchemy.types.JSON.Comparator.
as_string
()Cast an indexed value as string.
e.g.:
stmt = select(
mytable.c.json_column['some_data'].as_string()
).where(
mytable.c.json_column['some_data'].as_string() ==
'some string'
)
New in version 1.3.11.
class
JSONElementType
Common function for index / path elements in a JSON expression.
Class signature
class
sqlalchemy.types.JSON.JSONElementType
(sqlalchemy.types.TypeEngine
)method
sqlalchemy.types.JSON.JSONElementType.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
method
sqlalchemy.types.JSON.JSONElementType.
literal_processor
(dialect)Return a conversion function for processing literal values that are to be rendered directly without using binds.
This function is used when the compiler makes use of the “literal_binds” flag, typically used in DDL generation as well as in certain scenarios where backends don’t accept bound parameters.
New in version 0.9.0.
method
sqlalchemy.types.JSON.JSONElementType.
string_bind_processor
(dialect)method
sqlalchemy.types.JSON.JSONElementType.
string_literal_processor
(dialect)
class
JSONIndexType
Placeholder for the datatype of a JSON index value.
This allows execution-time processing of JSON index values for special syntaxes.
Class signature
class
sqlalchemy.types.JSON.JSONIndexType
(sqlalchemy.types.JSONElementType
)class
JSONIntIndexType
Placeholder for the datatype of a JSON index value.
This allows execution-time processing of JSON index values for special syntaxes.
Class signature
class
sqlalchemy.types.JSON.JSONIntIndexType
(sqlalchemy.types.JSONIndexType
)class
JSONPathType
Placeholder type for JSON path operations.
This allows execution-time processing of a path-based index value into a specific SQL syntax.
Class signature
class
sqlalchemy.types.JSON.JSONPathType
(sqlalchemy.types.JSONElementType
)class
JSONStrIndexType
Placeholder for the datatype of a JSON index value.
This allows execution-time processing of JSON index values for special syntaxes.
Class signature
class
sqlalchemy.types.JSON.JSONStrIndexType
(sqlalchemy.types.JSONIndexType
)attribute
sqlalchemy.types.JSON.
NULL
= symbol(‘JSON_NULL’)Describe the json value of NULL.
This value is used to force the JSON value of
"null"
to be used as the value. A value of PythonNone
will be recognized either as SQL NULL or JSON"null"
, based on the setting of theJSON.none_as_null
flag; theJSON.NULL
constant can be used to always resolve to JSON"null"
regardless of this setting. This is in contrast to thenull()
construct, which always resolves to SQL NULL. E.g.:from sqlalchemy import null
from sqlalchemy.dialects.postgresql import JSON
# will *always* insert SQL NULL
obj1 = MyObject(json_value=null())
# will *always* insert JSON string "null"
obj2 = MyObject(json_value=JSON.NULL)
session.add_all([obj1, obj2])
session.commit()
In order to set JSON NULL as a default value for a column, the most transparent method is to use
text()
:Table(
'my_table', metadata,
Column('json_data', JSON, default=text("'null'"))
)
While it is possible to use
JSON.NULL
in this context, theJSON.NULL
value will be returned as the value of the column, which in the context of the ORM or other repurposing of the default value, may not be desirable. Using a SQL expression means the value will be re-fetched from the database within the context of retrieving generated defaults.method
sqlalchemy.types.JSON.
__init__
(none_as_null=False)Construct a
JSON
type.Parameters
none_as_null=False –
if True, persist the value
None
as a SQL NULL value, not the JSON encoding ofnull
. Note that when this flag is False, thenull()
construct can still be used to persist a NULL value:from sqlalchemy import null
conn.execute(table.insert(), data=null())
Note
JSON.none_as_null
does not apply to the values passed toColumn.default
andColumn.server_default
; a value ofNone
passed for these parameters means “no default present”.See also
method
sqlalchemy.types.JSON.
bind_processor
(dialect)Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
attribute
sqlalchemy.types.JSON.
comparator_factory
alias of
sqlalchemy.sql.sqltypes.JSON.Comparator
attribute
sqlalchemy.types.JSON.
python_type
method
sqlalchemy.types.JSON.
result_processor
(dialect, coltype)Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.
If processing is not necessary, the method should return
None
.Parameters
dialect – Dialect instance in use.
coltype – DBAPI coltype argument received in cursor.description.
attribute
sqlalchemy.types.JSON.
should_evaluate_none
If True, the Python constant
None
is considered to be handled explicitly by this type.The ORM uses this flag to indicate that a positive value of
None
is passed to the column in an INSERT statement, rather than omitting the column from the INSERT statement which has the effect of firing off column-level defaults. It also allows types which have special behavior for Python None, such as a JSON type, to indicate that they’d like to handle the None value explicitly.To set this flag on an existing type, use the
TypeEngine.evaluates_none()
method.See also
New in version 1.1.
class sqlalchemy.types.``INTEGER
The SQL INT or INTEGER type.
Class signature
class sqlalchemy.types.INTEGER
(sqlalchemy.types.Integer
)
class sqlalchemy.types.``NCHAR
(length=None, \*kwargs*)
The SQL NCHAR type.
Class signature
class sqlalchemy.types.NCHAR
(sqlalchemy.types.Unicode
)
class sqlalchemy.types.``NVARCHAR
(length=None, \*kwargs*)
The SQL NVARCHAR type.
Class signature
class sqlalchemy.types.NVARCHAR
(sqlalchemy.types.Unicode
)
class sqlalchemy.types.``NUMERIC
(precision=None, scale=None, decimal_return_scale=None, asdecimal=True)
The SQL NUMERIC type.
Class signature
class sqlalchemy.types.NUMERIC
(sqlalchemy.types.Numeric
)
class sqlalchemy.types.``REAL
(precision=None, asdecimal=False, decimal_return_scale=None)
The SQL REAL type.
Class signature
class sqlalchemy.types.REAL
(sqlalchemy.types.Float
)
class sqlalchemy.types.``SMALLINT
The SQL SMALLINT type.
Class signature
class sqlalchemy.types.SMALLINT
(sqlalchemy.types.SmallInteger
)
class sqlalchemy.types.``TEXT
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
The SQL TEXT type.
Class signature
class sqlalchemy.types.TEXT
(sqlalchemy.types.Text
)
class sqlalchemy.types.``TIME
(timezone=False)
The SQL TIME type.
Class signature
class sqlalchemy.types.TIME
(sqlalchemy.types.Time
)
class sqlalchemy.types.``TIMESTAMP
(timezone=False)
The SQL TIMESTAMP type.
TIMESTAMP
datatypes have support for timezone storage on some backends, such as PostgreSQL and Oracle. Use the TIMESTAMP.timezone
argument in order to enable “TIMESTAMP WITH TIMEZONE” for these backends.
Class signature
class sqlalchemy.types.TIMESTAMP
(sqlalchemy.types.DateTime
)
method
sqlalchemy.types.TIMESTAMP.
__init__
(timezone=False)Construct a new
TIMESTAMP
.Parameters
timezone – boolean. Indicates that the TIMESTAMP type should enable timezone support, if available on the target database. On a per-dialect basis is similar to “TIMESTAMP WITH TIMEZONE”. If the target database does not support timezones, this flag is ignored.
method
sqlalchemy.types.TIMESTAMP.
get_dbapi_type
(dbapi)Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling
setinputsizes()
, for example.
class sqlalchemy.types.``VARBINARY
(length=None)
The SQL VARBINARY type.
Class signature
class sqlalchemy.types.VARBINARY
(sqlalchemy.types._Binary
)
class sqlalchemy.types.``VARCHAR
(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False)
The SQL VARCHAR type.
Class signature
class sqlalchemy.types.VARCHAR
(sqlalchemy.types.String
)
Vendor-Specific Types
Database-specific types are also available for import from each database’s dialect module. See the Dialects reference for the database you’re interested in.
For example, MySQL has a BIGINT
type and PostgreSQL has an INET
type. To use these, import them from the module explicitly:
from sqlalchemy.dialects import mysql
table = Table('foo', metadata,
Column('id', mysql.BIGINT),
Column('enumerates', mysql.ENUM('a', 'b', 'c'))
)
Or some PostgreSQL types:
from sqlalchemy.dialects import postgresql
table = Table('foo', metadata,
Column('ipaddress', postgresql.INET),
Column('elements', postgresql.ARRAY(String))
)
Each dialect provides the full set of typenames supported by that backend within its __all__ collection, so that a simple import * or similar will import all supported types as implemented for that backend:
from sqlalchemy.dialects.postgresql import *
t = Table('mytable', metadata,
Column('id', INTEGER, primary_key=True),
Column('name', VARCHAR(300)),
Column('inetaddr', INET)
)
Where above, the INTEGER and VARCHAR types are ultimately from sqlalchemy.types, and INET is specific to the PostgreSQL dialect.
Some dialect level types have the same name as the SQL standard type, but also provide additional arguments. For example, MySQL implements the full range of character and string types including additional arguments such as collation and charset:
from sqlalchemy.dialects.mysql import VARCHAR, TEXT
table = Table('foo', meta,
Column('col1', VARCHAR(200, collation='binary')),
Column('col2', TEXT(charset='latin1'))
)