16.3 防止缓冲区溢出的方法
下面一些方法防止缓冲区溢出。MSVC使用以下编译选项:
/RTCs Stack Frame runtime checking
/GZ Enable stack checks (/RTCs)
一种方法是在函数局部变量和序言之间写入随机值。在函数退出之前检查该值。如果该值不一致则挂起而不执行RET。进程将被挂起。 该随机值有时被称为“探测值”。 如果使用MSVC编译简单的例子(16.1),使用RTC1和RTCs选项,将能看到函数调用@_RTC_CheckStackVars@8函数来检测“探测值“。
我们来看GCC如何处理这些。我们使用alloca()(4.2.4)例子:
#include <malloc.h>
#include <stdio.h>
void f()
{
char *buf=(char*)alloca (600);
_snprintf (buf, 600, "hi! %d, %d, %d", 1, 2, 3);
puts (buf);
};
我们不使用任何附加编译选项,只使用默认选项,GCC 4.7.3将插入“探测“检测代码:
Listing 16.3: GCC 4.7.3
.LC0:
.string "hi! %d, %d, %d
"
f:
push ebp
mov ebp, esp
push ebx
sub esp, 676
lea ebx, [esp+39]
and ebx, -16
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LC0 ; "hi! %d, %d, %d
"
mov DWORD PTR [esp+4], 600
mov DWORD PTR [esp], ebx
mov eax, DWORD PTR gs:20 ; canary
mov DWORD PTR [ebp-12], eax
xor eax, eax
call _snprintf
mov DWORD PTR [esp], ebx
call puts
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20 ; canary
jne .L5
mov ebx, DWORD PTR [ebp-4]
leave
ret
.L5:
call __stack_chk_fail
随机值存在于gs:20。它被写入到堆栈,在函数的结尾与gs:20的探测值对比,如果不一致,__stack_chk_fail函数将被调用,控制台(Ubuntu 13.04 x86)将输出以下信息:
*** buffer overflow detected ***: ./2_1 terminated
======= Backtrace: =========
/lib/i386-linux-gnu/libc.so.6(__fortify_fail+0x63)[0xb7699bc3]
/lib/i386-linux-gnu/libc.so.6(+0x10593a)[0xb769893a]
/lib/i386-linux-gnu/libc.so.6(+0x105008)[0xb7698008]
/lib/i386-linux-gnu/libc.so.6(_IO_default_xsputn+0x8c)[0xb7606e5c]
/lib/i386-linux-gnu/libc.so.6(_IO_vfprintf+0x165)[0xb75d7a45]
/lib/i386-linux-gnu/libc.so.6(__vsprintf_chk+0xc9)[0xb76980d9]
/lib/i386-linux-gnu/libc.so.6(__sprintf_chk+0x2f)[0xb7697fef]
./2_1[0x8048404]
/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf5)[0xb75ac935]
======= Memory map: ========
08048000-08049000 r-xp 00000000 08:01 2097586 /home/dennis/2_1
08049000-0804a000 r--p 00000000 08:01 2097586 /home/dennis/2_1
0804a000-0804b000 rw-p 00001000 08:01 2097586 /home/dennis/2_1
094d1000-094f2000 rw-p 00000000 00:00 0 [heap]
b7560000-b757b000 r-xp 00000000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b757b000-b757c000 r--p 0001a000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b757c000-b757d000 rw-p 0001b000 08:01 1048602 /lib/i386-linux-gnu/libgcc_s.so.1
b7592000-b7593000 rw-p 00000000 00:00 0
b7593000-b7740000 r-xp 00000000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7740000-b7742000 r--p 001ad000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7742000-b7743000 rw-p 001af000 08:01 1050781 /lib/i386-linux-gnu/libc-2.17.so
b7743000-b7746000 rw-p 00000000 00:00 0
b775a000-b775d000 rw-p 00000000 00:00 0
b775d000-b775e000 r-xp 00000000 00:00 0 [vdso]
b775e000-b777e000 r-xp 00000000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
b777e000-b777f000 r--p 0001f000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
b777f000-b7780000 rw-p 00020000 08:01 1050794 /lib/i386-linux-gnu/ld-2.17.so
bff35000-bff56000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)
gs被叫做段寄存器,这些寄存器被广泛用在MS-DOS和扩展DOS时代。现在的作用和以前不同。简要的说,gs寄存器在linux下一直指向TLS(48)–存储线程的各种信息(win32环境下,fs寄存器同样的作用,指向TIB8 9)。 更多信息请参考linux源码arch/x86/include/asm/stackprotector.h(至少3.11版本)。
16.3.1 Optimizing Xcode (LLVM) + thumb-2 mode
我们回头看简单的数组例子(16.1)。我们来看LLVM如何检查“探测值“。
_main
var_64 = -0x64
var_60 = -0x60
var_5C = -0x5C
var_58 = -0x58
var_54 = -0x54
var_50 = -0x50
var_4C = -0x4C
var_48 = -0x48
var_44 = -0x44
var_40 = -0x40
var_3C = -0x3C
var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
var_20 = -0x20
var_1C = -0x1C
var_18 = -0x18
canary = -0x14
var_10 = -0x10
PUSH {R4-R7,LR}
ADD R7, SP, #0xC
STR.W R8, [SP,#0xC+var_10]!
SUB SP, SP, #0x54
MOVW R0, #aObjc_methtype ; "objc_methtype"
MOVS R2, #0
MOVT.W R0, #0
MOVS R5, #0
ADD R0, PC
LDR.W R8, [R0]
LDR.W R0, [R8]
STR R0, [SP,#0x64+canary]
MOVS R0, #2
STR R2, [SP,#0x64+var_64]
STR R0, [SP,#0x64+var_60]
MOVS R0, #4
STR R0, [SP,#0x64+var_5C]
MOVS R0, #6
STR R0, [SP,#0x64+var_58]
MOVS R0, #8
STR R0, [SP,#0x64+var_54]
MOVS R0, #0xA
STR R0, [SP,#0x64+var_50]
MOVS R0, #0xC
STR R0, [SP,#0x64+var_4C]
MOVS R0, #0xE
STR R0, [SP,#0x64+var_48]
MOVS R0, #0x10
STR R0, [SP,#0x64+var_44]
MOVS R0, #0x12
STR R0, [SP,#0x64+var_40]
MOVS R0, #0x14
STR R0, [SP,#0x64+var_3C]
MOVS R0, #0x16
STR R0, [SP,#0x64+var_38]
MOVS R0, #0x18
STR R0, [SP,#0x64+var_34]
MOVS R0, #0x1A
STR R0, [SP,#0x64+var_30]
MOVS R0, #0x1C
STR R0, [SP,#0x64+var_2C]
MOVS R0, #0x1E
STR R0, [SP,#0x64+var_28]
MOVS R0, #0x20
STR R0, [SP,#0x64+var_24]
MOVS R0, #0x22
STR R0, [SP,#0x64+var_20]
MOVS R0, #0x24
STR R0, [SP,#0x64+var_1C]
MOVS R0, #0x26
STR R0, [SP,#0x64+var_18]
MOV R4, 0xFDA ; "a[%d]=%d
"
MOV R0, SP
ADDS R6, R0, #4
ADD R4, PC
B loc_2F1C
; second loop begin
loc_2F14
ADDS R0, R5, #1
LDR.W R2, [R6,R5,LSL#2]
MOV R5, R0
loc_2F1C
MOV R0, R4
MOV R1, R5
BLX _printf
CMP R5, #0x13
BNE loc_2F14
LDR.W R0, [R8]
LDR R1, [SP,#0x64+canary]
CMP R0, R1
ITTTT EQ ; canary still correct?
MOVEQ R0, #0
ADDEQ SP, SP, #0x54
LDREQ.W R8, [SP+0x64+var_64],#4
POPEQ {R4-R7,PC}
BLX ___stack_chk_fail
首先可以看到,LLVM循环展开写入数组,LLVM认为先计算出数组元素的值速度更快。 在函数的结尾我们能看到“探测值“的检测—局部存储的值与R8指向的标准值对比。如果相等4指令块将通过”ITTTT EQ“触发,R0写入0,函数退出。如果不相等,指令块将不会被触发,跳向___stack_chk_fail函数,结束进程。
16.4 One more word about arrays
现在我们来理解下面的C/C++代码为什么不能正常使用10:
void f(int size)
{
int a[size];
...
};
这是因为在编译阶段编译器不知道数组的具体大小无论是在堆栈或者数据段,无法分配具体空间。 如果你需要任意大小的数组,应该通过malloc()分配空间,然后访问内存块来访问你需要的类型数组。或者使用C99标准[15,6.7.5/2],但它内部看起来更像alloca()(4.2.4)。