问题
最小生成树的Kruskal算法
描述:有A、B、C、D四个点,每两个点之间的距离(无方向)是(第一个数字是两点之间距离,后面两个字母代表两个点):(1,’A’,’B’),(5,’A’,’C’),(3,’A’,’D’),(4,’B’,’C’),(2,’B’,’D’),(1,’C’,’D’)
生成边长和最小的树,也就是找出一种连接方法,将各点连接起来,并且各点之间的距离和最小。
思路说明:
Kruskal算法是经典的无向图最小生成树解决方法。此处列举两种python的实现方法。这两种方法均参考网上,并根据所学感受进行了适当改动。
解决1(Python)
#! /usr/bin/env python
#coding:utf-8
#以全局变量X定义节点集合,即类似{'A':'A','B':'B','C':'C','D':'D'},如果A、B两点联通,则会更改为{'A':'B','B':'B",...},即任何两点联通之后,两点的值value将相同。
X = dict()
#各点的初始等级均为0,如果被做为连接的的末端,则增加1
R = dict()
#设置X R的初始值
def make_set(point):
X[point] = point
R[point] = 0
#节点的联通分量
def find(point):
if X[point] != point:
X[point] = find(X[point])
return X[point]
#连接两个分量(节点)
def merge(point1,point2):
r1 = find(point1)
r2 = find(point2)
if r1 != r2:
if R[r1] > R[r2]:
X[r2] = r1
else:
X[r1] = r2
if R[r1] == R[r2]: R[r2] += 1
#KRUSKAL算法实现
def kruskal(graph):
for vertice in graph['vertices']:
make_set(vertice)
minu_tree = set()
edges = list(graph['edges'])
edges.sort() #按照边长从小到达排序
for edge in edges:
weight, vertice1, vertice2 = edge
if find(vertice1) != find(vertice2):
merge(vertice1, vertice2)
minu_tree.add(edge)
return minu_tree
if __name__=="__main__":
graph = {
'vertices': ['A', 'B', 'C', 'D', 'E', 'F'],
'edges': set([
(1, 'A', 'B'),
(5, 'A', 'C'),
(3, 'A', 'D'),
(4, 'B', 'C'),
(2, 'B', 'D'),
(1, 'C', 'D'),
])
}
result = kruskal(graph)
print result
"""
参考:
1.https://github.com/qiwsir/Algorithms-Book--Python/blob/master/5-Greedy-algorithms/kruskal.py
2.《算法基础》(GILLES Brassard,Paul Bratley)
"""
解决2(Python)
以下代码参考http://www.ics.uci.edu/~eppstein/PADS/的源码
#! /usr/bin/env python
#coding:utf-8
import unittest
class UnionFind:
"""
UnionFind的实例:
Each unionFind instance X maintains a family of disjoint sets of
hashable objects, supporting the following two methods:
- X[item] returns a name for the set containing the given item.
Each set is named by an arbitrarily-chosen one of its members; as
long as the set remains unchanged it will keep the same name. If
the item is not yet part of a set in X, a new singleton set is
created for it.
- X.union(item1, item2, ...) merges the sets containing each item
into a single larger set. If any item is not yet part of a set
in X, it is added to X as one of the members of the merged set.
"""
def __init__(self):
"""Create a new empty union-find structure."""
self.weights = {}
self.parents = {}
def __getitem__(self, object):
"""Find and return the name of the set containing the object."""
# check for previously unknown object
if object not in self.parents:
self.parents[object] = object
self.weights[object] = 1
return object
# find path of objects leading to the root
path = [object]
root = self.parents[object]
while root != path[-1]:
path.append(root)
root = self.parents[root]
# compress the path and return
for ancestor in path:
self.parents[ancestor] = root
return root
def __iter__(self):
"""Iterate through all items ever found or unioned by this structure."""
return iter(self.parents)
def union(self, *objects):
"""Find the sets containing the objects and merge them all."""
roots = [self[x] for x in objects]
heaviest = max([(self.weights[r],r) for r in roots])[1]
for r in roots:
if r != heaviest:
self.weights[heaviest] += self.weights[r]
self.parents[r] = heaviest
"""
Various simple functions for graph input.
Each function's input graph G should be represented in such a way that "for v in G" loops through the vertices, and "G[v]" produces a list of the neighbors of v; for instance, G may be a dictionary mapping each vertex to its neighbor set.
D. Eppstein, April 2004.
"""
def isUndirected(G):
"""Check that G represents a simple undirected graph."""
for v in G:
if v in G[v]:
return False
for w in G[v]:
if v not in G[w]:
return False
return True
def union(*graphs):
"""Return a graph having all edges from the argument graphs."""
out = {}
for G in graphs:
for v in G:
out.setdefault(v,set()).update(list(G[v]))
return out
"""
Kruskal's algorithm for minimum spanning trees. D. Eppstein, April 2006.
"""
def MinimumSpanningTree(G):
"""
Return the minimum spanning tree of an undirected graph G.
G should be represented in such a way that iter(G) lists its
vertices, iter(G[u]) lists the neighbors of u, G[u][v] gives the
length of edge u,v, and G[u][v] should always equal G[v][u].
The tree is returned as a list of edges.
"""
if not isUndirected(G):
raise ValueError("MinimumSpanningTree: input is not undirected")
for u in G:
for v in G[u]:
if G[u][v] != G[v][u]:
raise ValueError("MinimumSpanningTree: asymmetric weights")
# Kruskal's algorithm: sort edges by weight, and add them one at a time.
# We use Kruskal's algorithm, first because it is very simple to
# implement once UnionFind exists, and second, because the only slow
# part (the sort) is sped up by being built in to Python.
subtrees = UnionFind()
tree = []
for W,u,v in sorted((G[u][v],u,v) for u in G for v in G[u]):
if subtrees[u] != subtrees[v]:
tree.append((u,v))
subtrees.union(u,v)
return tree
# If run standalone, perform unit tests
class MSTTest(unittest.TestCase):
def testMST(self):
"""Check that MinimumSpanningTree returns the correct answer."""
G = {0:{1:11,2:13,3:12},1:{0:11,3:14},2:{0:13,3:10},3:{0:12,1:14,2:10}}
T = [(2,3),(0,1),(0,3)]
for e,f in zip(MinimumSpanningTree(G),T):
self.assertEqual(min(e),min(f))
self.assertEqual(max(e),max(f))
if __name__ == "__main__":
unittest.main()