问题
Python中的二叉树查找算法模块
思路说明
二叉树查找算法,在开发实践中,会经常用到。按照惯例,对于这么一个常用的东西,Python一定会提供轮子的。是的,python就是这样,一定会让开发者省心,降低开发者的工作压力。
python中的二叉树模块内容:
- BinaryTree:非平衡二叉树
- AVLTree:平衡的AVL树
- RBTree:平衡的红黑树
以上是用python写的,相面的模块是用c写的,并且可以做为Cython的包。
- FastBinaryTree
- FastAVLTree
- FastRBTree
特别需要说明的是:树往往要比python内置的dict类慢一些,但是它中的所有数据都是按照某个关键词进行排序的,故在某些情况下是必须使用的。
安装和使用
安装方法
安装环境:
ubuntu12.04, python 2.7.6
安装方法
- 下载源码,地址:https://bitbucket.org/mozman/bintrees/src
进入源码目录,看到setup.py文件,在该目录内运行
python setup.py install
安装成功,ok!下面就看如何使用了。
应用
bintrees提供了丰富的API,涵盖了通常的多种应用。下面逐条说明其应用。
- 引用
如果按照一般模块的思路,输入下面的命令引入上述模块
>>> import bintrees
错了,这是错的,出现如下警告:(×××不可用,用×××)
Warning: FastBinaryTree not available, using Python version BinaryTree.
Warning: FastAVLTree not available, using Python version AVLTree.
Warning: FastRBTree not available, using Python version RBTree.
正确的引入方式是:
>>> from bintrees import BinaryTree #只引入了BinartTree
>>> from bintrees import * #三个模块都引入了
- 实例化
看例子:
>>> btree = BinaryTree()
>>> btree
BinaryTree({})
>>> type(btree)
<class 'bintrees.bintree.BinaryTree'>
- 逐个增加键值对:.setitem(k,v) .复杂度O(log(n))(后续说明中,都会有复杂度标示,为了简单,直接标明:O(log(n)).)
看例子:
>>> btree.__setitem__("Tom","headmaster")
>>> btree
BinaryTree({'Tom': 'headmaster'})
>>> btree.__setitem__("blog","http://blog.csdn.net/qiwsir")
>>> btree
BinaryTree({'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
- 批量添加:.update(E) E是dict/iterable,将E批量更新入btree. O(E*log(n))
看例子:
>>> adict = [(2,"phone"),(5,"tea"),(9,"scree"),(7,"computer")]
>>> btree.update(adict)
>>> btree
BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
- 查找某个key是否存在:.contains(k) 如果含有键k,则返回True,否则返回False. O(log(n))
看例子:
>>> btree
BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
>>> btree.__contains__(5)
True
>>> btree.__contains__("blog")
True
>>> btree.__contains__("qiwsir")
False
>>> btree.__contains__(1)
False
- 根据key删除某个key-value:.delitem(key), O(log(n))
看例子:
>>> btree
BinaryTree({2: 'phone', 5: 'tea', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
>>> btree.__delitem__(5) #删除key=5的key-value,即:5:'tea' 被删除.
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
- 根据key值得到该kye的value:.getitem(key)
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
>>> btree.__getitem__("blog")
'http://blog.csdn.net/qiwsir'
>>> btree.__getitem__(7)
'computer'
>>> btree._getitem__(5) #在btree中没有key=5,于是报错。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'BinaryTree' object has no attribute '_getitem__'
- 迭代器:.iter()
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
>>> aiter = btree.__iter__()
>>> aiter
<generator object <genexpr> at 0xb7416dec>
>>> aiter.next() #注意:next()一个之后,该值从list中删除
2
>>> aiter.next()
7
>>> list(aiter)
[9, 'Tom', 'blog']
>>> list(aiter) #结果是空
[]
>>> bool(aiter) #but,is True
True
- 数的数据长度:.len(),返回btree的长度。O(1)
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'Tom': 'headmaster', 'blog': 'http://blog.csdn.net/qiwsir'})
>>> btree.__len__()
5
找出key最大的k-v对:.max(),按照key排列,返回key最大的键值对。
找出key最小的键值对:.min()
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
>>> btree.__max__()
(9, 'scree')
>>> btree.__min__()
(2, 'phone')
- 两棵树的关系运算
看例子:
>>> other = [(3,'http://blog.csdn.net/qiwsir'),(7,'qiwsir')]
>>> bother = BinaryTree() #再建一个树
>>> bother.update(other) #加入数据
>>> bother
BinaryTree({3: 'http://blog.csdn.net/qiwsir', 7: 'qiwsir'})
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
>>> btree.__and__(bother) #重叠部分部分
BinaryTree({7: 'computer'})
>>> btree.__or__(bother) #全部
BinaryTree({2: 'phone', 3: 'http://blog.csdn.net/qiwsir', 7: 'computer', 9: 'scree'})
>>> btree.__sub__(bother) #btree不与bother重叠的部分
BinaryTree({2: 'phone', 9: 'scree'})
>>> btree.__xor__(bother) #两者非重叠部分
BinaryTree({2: 'phone', 3: 'http://blog.csdn.net/qiwsir', 9: 'scree'})
- 输出字符串模样,注意仅仅是输出的模样罢了:.repr()
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
>>> btree.__repr__()
"BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})"
- 清空树中的所有数据:.clear(),O(log(n))
看例子:
>>> bother
BinaryTree({3: 'http://blog.csdn.net/qiwsir', 7: 'qiwsir'})
>>> bother.clear()
>>> bother
BinaryTree({})
>>> bool(bother)
False
- 浅拷贝:.copy(),官方文档上说是浅拷贝,但是我做了操作实现,是下面所示,还不是很理解其“浅”的含义。O(n*log(n))
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
>>> ctree = btree.copy()
>>> ctree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'})
>>> btree.__setitem__("github","qiwsir") #增加btree的数据
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> ctree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree'}) #这是不是在说明属于深拷贝呢?
>>> ctree.__delitem__(7) #删除ctree的一个数据
>>> ctree
BinaryTree({2: 'phone', 9: 'scree'})
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
- 移除树中的一个数据:.discard(key),这个功能与.delitem(key)类似.两者都不反悔值。O(log(n))
看例子:
>>> ctree
BinaryTree({2: 'phone', 9: 'scree'})
>>> ctree.discard(2) #删除后,不返回值,或者返回None
>>> ctree
BinaryTree({9: 'scree'})
>>> ctree.discard(2) #如果删除的key不存在,也返回None
>>> ctree.discard(3)
>>> ctree.__delitem__(3) #但是,.__delitem__(key)则不同,如果key不存在,会报错。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 264, in __delitem__
self.remove(key)
File "/usr/local/lib/python2.7/site-packages/bintrees/bintree.py", line 124, in remove
raise KeyError(str(key))
KeyError: '3'
- 根据key查找,并返回或返回备用值:.get(key[,d])。如果key在树中存在,则返回value,否则如果有d,则返回d值。O(log(n))
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> btree.get(2,"algorithm")
'phone'
>>> btree.get("python","algorithm") #没有key='python'的值,返回'algorithm'
'algorithm'
>>> btree.get("python") #如果不指定第二个参数,若查不到,则返回None
>>>
- 判断树是否为空:is_empty().根据树数据的长度,如果数据长度为0,则为空。O(1)
看例子:
>>> ctree
BinaryTree({9: 'scree'})
>>> ctree.clear() #清空数据
>>> ctree
BinaryTree({})
>>> ctree.is_empty()
True
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> btree.is_empty()
False
- 根据key、value循环从树中取值:
.items([reverse])—按照(key,value)结构取值;
.keys([reverse])—key
.values([reverse])—value. O(n)
.iter_items(s,e[,reverse]—s,e是key的范围,也就是生成在某个范围内的key的迭代器 O(n)
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> for (k,v) in btree.items():
... print k,v
...
2 phone
7 computer
9 scree
github qiwsir
>>> for k in btree.keys():
... print k
...
2
7
9
github
>>> for v in btree.values():
... print v
...
phone
computer
scree
qiwsir
>>> for (k,v) in btree.items(reverse=True): #反序
... print k,v
...
github qiwsir
9 scree
7 computer
2 phone
>>> btree
BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
>>> for (k,v) in btree.iter_items(6,9): #要求迭代6<=key<9的键值对数据
... print k,v
...
7 computer
8 eight
>>>
- 删除数据并返回该值:
.pop(key[,d]), 根据key删除树的数据,并返回该value,但是如果没有,并也指定了备选返回的d,则返回d,如果没有d,则报错;
.pop_item(),在树中随机选择(key,value)删除,并返回。
看例子:
>>> ctree = btree.copy()
>>> ctree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> ctree.pop(2) #删除key=2的数据,返回其value
'phone'
>>> ctree.pop(2) #删除一个不存在的key,报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 350, in pop
value = self.get_value(key)
File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 557, in get_value
raise KeyError(str(key))
KeyError: '2'
>>> ctree.pop_item() #随机返回一个(key,value),并已删除之
(7, 'computer')
>>> ctree
BinaryTree({9: 'scree', 'github': 'qiwsir'})
>>> ctree.pop(7,"sing") #如果没有,可以返回指定值
'sing'
- 查找数据,并返回value:.set_default(key[,d]),在树的数据中查找key,如果存在,则返回该value。如果不存在,当指定了d,则将该(key,d)添加到树内;当不指定d的时候,添加(key,None). O(log(n))
看例子:
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 9: 'scree', 'github': 'qiwsir'})
>>> btree.set_default(7) #存在则返回
'computer'
>>> btree.set_default(8,"eight") #不存在,则返回后备指定值,并加入到树
'eight'
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
>>> btree.set_default(5) #如果不指定值,则会加入None
>>> btree
BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
>>> btree.get(2) #注意,.get(key)与.set_default(key[,d])的区别
'phone'
>>> btree.get(3,"mobile") #不存在的 key,返回但不增加到树
'mobile'
>>> btree
BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
- 根据key删除值
.remove(key),删除(key,value)
.remove_items(keys),keys是一个key组成的list,逐个删除树中的对应数据
看例子:
>>> ctree
BinaryTree({2: 'phone', 5: None, 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
>>> ctree.remove_items([5,6]) #key=6,不存在,报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/site-packages/bintrees/abctree.py", line 271, in remove_items
self.remove(key)
File "/usr/local/lib/python2.7/site-packages/bintrees/bintree.py", line 124, in remove
raise KeyError(str(key))
KeyError: '6'
>>> ctree
BinaryTree({2: 'phone', 7: 'computer', 8: 'eight', 9: 'scree', 'github': 'qiwsir'})
>>> ctree.remove_items([2,7,'github']) #按照 列表中顺序逐个删除
>>> ctree
BinaryTree({8: 'eight', 9: 'scree'})