torch.random
torch.random.fork_rng(devices=None, enabled=True, _caller=’fork_rng’, _devices_kw=’devices’)[source]
福克斯的RNG,所以,当你返回时,RNG复位的状态,这是以前英寸
参数
* **devices** (可迭代CUDA编号) - CUDA设备针对其叉的RNG。 CPU RNG状态始终分叉。默认情况下, `fork_rng() `运行在所有设备上,但会发出警告,如果你的机器有很多的设备,因为该功能将运行非常缓慢在这种情况下。如果您明确指定的设备,这个警告将被抑制
* **enabled** ([bool](https://docs.python.org/3/library/functions.html#bool "\(in Python v3.7\)")) - 如果`假 `时,RNG没有分叉。这是很容易禁用上下文管理,而不必删除它,并在它之下取消缩进Python代码便利的说法。
torch.random.get_rng_state()
[source]
返回随机数发生器状态作为 torch.ByteTensor 。
torch.random.initial_seed()
[source]
返回初始种子用于产生随机数作为一个Python 长。
torch.random.manual_seed(seed)
[source]
设置生成随机数种子。返回 torch.Generator 对象。
参数
**seed** ([int](https://docs.python.org/3/library/functions.html#int) - 所需的种子。
torch.random.seed()
[source]
设置用于产生随机数,以非确定性的随机数种子。返回用于播种RNG一个64位的数。
torch.random.set_rng_state(new_state)
[source]
设置随机数生成器的状态。
参数
**new_state**(torch.ByteTensor) - 期望状态
随机数发生器
torch.random.get_rng_state()
[source]
Returns the random number generator state as a torch.ByteTensor.
torch.random.set_rng_state(new_state)
[source]
Sets the random number generator state.
Parameters
**new_state** ( _torch.ByteTensor_ ) – The desired state
torch.random.manual_seed(seed)
[source]
Sets the seed for generating random numbers. Returns a torch.Generator object.
Parameters seed ( int) – The desired seed.
torch.random.seed()
[source]
Sets the seed for generating random numbers to a non-deterministic random number. Returns a 64 bit number used to seed the RNG.
torch.random.initial_seed()
[source]
Returns the initial seed for generating random numbers as a Python long.
torch.random.fork_rng(devices=None, enabled=True, _caller='fork_rng', _devices_kw='devices')
[source]
Forks the RNG, so that when you return, the RNG is reset to the state that it was previously in.
Parameters
* **devices** ( _iterable of CUDA IDs_ ) – CUDA devices for which to fork the RNG. CPU RNG state is always forked. By default, `fork_rng()`operates on all devices, but will emit a warning if your machine has a lot of devices, since this function will run very slowly in that case. If you explicitly specify devices, this warning will be suppressed
* **enabled** ([ _bool_](https://docs.python.org/3/library/functions.html#bool "\(in Python v3.7\)")) – if `False`, the RNG is not forked. This is a convenience argument for easily disabling the context manager without having to delete it and unindent your Python code under it.