基于TorchText的语言翻译
译者:PengboLiu
校验:PengboLiu
本教程介绍如何使用torchtext
的几个类来预处理英德数据集,该数据集可以用来训练seq2seq模型,既而能自动把德语句子翻译成英语。
本文基于PyTorch社区成员Ben Trevett的教程,并得到了他本人的许可。
阅读完本教程,你将能够:
使用以下
torchtext
的类将句子预处理为NLP建模的常用格式::
Field和 TranslationDataset
torchtext
具有创建数据集的功能,可以轻松对其迭代以构建机器翻译模型。一个关键的类是Filed,它指定每个句子的预处理方法,另一个类是TranslationDataset ; torchtext
内置了几个翻译数据集;在本教程中,我们将使用 Multi30k dataset数据集,其中包含约30000个英德句对(平均长度约13个字)。
注:本教程中的tokenization 需要使用 Spacy 。Spacy包可以帮助我们对英语以外的语言tokenization。torchtext
提供了basic_english
的tokenizer ,但是对于其他语言,使用Spacy对我们而言是最好的选择。
为了运行该教程,首先要使用pip或conda安装Spacy。接下来,下载英德原始数据:
python -m spacy download en
python -m spacy download de
安装Spacy后,以下代码将根据Field中定义的tokenizer 处理TranslationDataset
中的每个句子。
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator
SRC = Field(tokenize = "spacy",
tokenizer_language="de",
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
TRG = Field(tokenize = "spacy",
tokenizer_language="en",
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'),
fields = (SRC, TRG))
输出:
downloading training.tar.gz
downloading validation.tar.gz
downloading mmt_task1_test2016.tar.gz
现在,我们已经定义好了train_data
,torchtext
的Field
有一个非常有用的功能 :我们可以使用build_vocab
方法创建每个语言的词汇表。
SRC.build_vocab(train_data, min_freq = 2)
TRG.build_vocab(train_data, min_freq = 2)
一旦这些代码行被运行,SRC.vocab.stoi
将成为一个tokens作为key,索引作为value的词典;对应的, SRC.vocab.itos
是一个交换了key和value内容相同的字典。在本教程中我们不会广泛使用此功能,但是你可能在遇到其他NLP任务有用。
BucketIterator
我们使用最后一个torchtext
的特性是BucketIterator
, 它以TranslationDataset作为第一个参数,所以易于使用。如文档所说:定义一个迭代器,该迭代器将相似长度的数据放在一起。产生每个新bacth时,最大程度地减少所需的填充量。
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BATCH_SIZE = 128
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = BATCH_SIZE,
device = device)
可以像DataLoader
一样调用这些迭代器。 在下面的训练和评估函数中,它们可以简单地通过以下方式调用:
for i, batch in enumerate(iterator):
每个batch
于是具有SRC
和TRG
属性:
src = batch.src
trg = batch.trg
定义我们的nn.Module
和Optimizer
解决了数据集的问题并为之定义好迭代器,我们剩下的任务就是定义模型和优化器完成训练过程。
具体来说,我们的模型遵循此处描述的结构。
注意:我们选择这种模型并不是因为它是目前最优的,而是因为它是机器翻译的标准模型。众所周知,目前机器翻译的最优模型是Transformers。
import random
from typing import Tuple
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import Tensor
class Encoder(nn.Module):
def __init__(self,
input_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: float):
super().__init__()
self.input_dim = input_dim
self.emb_dim = emb_dim
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.dropout = dropout
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self,
src: Tensor) -> Tuple[Tensor]:
embedded = self.dropout(self.embedding(src))
outputs, hidden = self.rnn(embedded)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
return outputs, hidden
class Attention(nn.Module):
def __init__(self,
enc_hid_dim: int,
dec_hid_dim: int,
attn_dim: int):
super().__init__()
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
self.attn = nn.Linear(self.attn_in, attn_dim)
def forward(self,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tensor:
src_len = encoder_outputs.shape[0]
repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
energy = torch.tanh(self.attn(torch.cat((
repeated_decoder_hidden,
encoder_outputs),
dim = 2)))
attention = torch.sum(energy, dim=2)
return F.softmax(attention, dim=1)
class Decoder(nn.Module):
def __init__(self,
output_dim: int,
emb_dim: int,
enc_hid_dim: int,
dec_hid_dim: int,
dropout: int,
attention: nn.Module):
super().__init__()
self.emb_dim = emb_dim
self.enc_hid_dim = enc_hid_dim
self.dec_hid_dim = dec_hid_dim
self.output_dim = output_dim
self.dropout = dropout
self.attention = attention
self.embedding = nn.Embedding(output_dim, emb_dim)
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def _weighted_encoder_rep(self,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tensor:
a = self.attention(decoder_hidden, encoder_outputs)
a = a.unsqueeze(1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted_encoder_rep = torch.bmm(a, encoder_outputs)
weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
return weighted_encoder_rep
def forward(self,
input: Tensor,
decoder_hidden: Tensor,
encoder_outputs: Tensor) -> Tuple[Tensor]:
input = input.unsqueeze(0)
embedded = self.dropout(self.embedding(input))
weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden,
encoder_outputs)
rnn_input = torch.cat((embedded, weighted_encoder_rep), dim = 2)
output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted_encoder_rep = weighted_encoder_rep.squeeze(0)
output = self.out(torch.cat((output,
weighted_encoder_rep,
embedded), dim = 1))
return output, decoder_hidden.squeeze(0)
class Seq2Seq(nn.Module):
def __init__(self,
encoder: nn.Module,
decoder: nn.Module,
device: torch.device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self,
src: Tensor,
trg: Tensor,
teacher_forcing_ratio: float = 0.5) -> Tensor:
batch_size = src.shape[1]
max_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
# first input to the decoder is the <sos> token
output = trg[0,:]
for t in range(1, max_len):
output, hidden = self.decoder(output, hidden, encoder_outputs)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.max(1)[1]
output = (trg[t] if teacher_force else top1)
return outputs
INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
# ENC_EMB_DIM = 256
# DEC_EMB_DIM = 256
# ENC_HID_DIM = 512
# DEC_HID_DIM = 512
# ATTN_DIM = 64
# ENC_DROPOUT = 0.5
# DEC_DROPOUT = 0.5
ENC_EMB_DIM = 32
DEC_EMB_DIM = 32
ENC_HID_DIM = 64
DEC_HID_DIM = 64
ATTN_DIM = 8
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)
model = Seq2Seq(enc, dec, device).to(device)
def init_weights(m: nn.Module):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
model.apply(init_weights)
optimizer = optim.Adam(model.parameters())
def count_parameters(model: nn.Module):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count_parameters(model):,} trainable parameters')
输出: The model has 1,856,685 trainable parameters
注:当计算模型分数尤其是翻译模型时,我们需要设置nn.CrossEntropyLoss
忽略padding。
PAD_IDX = TRG.vocab.stoi['<pad>']
criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
最后,我们可以训练和评价模型:
import math
import time
def train(model: nn.Module,
iterator: BucketIterator,
optimizer: optim.Optimizer,
criterion: nn.Module,
clip: float):
model.train()
epoch_loss = 0
for _, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
optimizer.zero_grad()
output = model(src, trg)
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
loss = criterion(output, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model: nn.Module,
iterator: BucketIterator,
criterion: nn.Module):
model.eval()
epoch_loss = 0
with torch.no_grad():
for _, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
output = model(src, trg, 0) #turn off teacher forcing
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def epoch_time(start_time: int,
end_time: int):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
N_EPOCHS = 10
CLIP = 1
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
valid_loss = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
test_loss = evaluate(model, test_iterator, criterion)
print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')
输出: Epoch: 01 | Time: 0m 36s
Train Loss: 5.686 | Train PPL: 294.579
Val. Loss: 5.250 | Val. PPL: 190.638
Epoch: 02 | Time: 0m 37s
Train Loss: 5.019 | Train PPL: 151.260
Val. Loss: 5.155 | Val. PPL: 173.274 Epoch: 03 | Time: 0m 37s
Train Loss: 4.757 | Train PPL: 116.453
Val. Loss: 4.976 | Val. PPL: 144.824
Epoch: 04 | Time: 0m 35s
Train Loss: 4.574 | Train PPL: 96.914
Val. Loss: 4.835 | Val. PPL: 125.834
Epoch: 05 | Time: 0m 35s
Train Loss: 4.421 | Train PPL: 83.185
Val. Loss: 4.783 | Val. PPL: 119.414
Epoch: 06 | Time: 0m 38s
Train Loss: 4.321 | Train PPL: 75.233
Val. Loss: 4.802 | Val. PPL: 121.734
Epoch: 07 | Time: 0m 38s
Train Loss: 4.233 | Train PPL: 68.957
Val. Loss: 4.675 | Val. PPL: 107.180
Epoch: 08 | Time: 0m 35s
Train Loss: 4.108 | Train PPL: 60.838
Val. Loss: 4.622 | Val. PPL: 101.693
Epoch: 09 | Time: 0m 34s
Train Loss: 4.020 | Train PPL: 55.680
Val. Loss: 4.530 | Val. PPL: 92.785 Epoch: 10 | Time: 0m 34s
Train Loss: 3.919 | Train PPL: 50.367
Val. Loss: 4.448 | Val. PPL: 85.441
| Test Loss: 4.464 | Test PPL: 86.801 |
接下来的步骤
- 看看Ben Trevett使用
torchtext
教程的其余部分 - 请继续关注使用其他
torchtext
功能以及nn.Transformer
语言建模预测下一个单词的教程!
脚本的总运行时间: (6分钟27.732秒)