序列对序列建模nn.Transformer和TorchText
译者:dabney777
校验:dabney777
本教程将会使用 nn.Transformer 模块训练一个序列到序列模型。
PyTorch 1.2 版本依据论文 Attention is All You Need 发布了标准的 transformer 模型。Transformer 模型已被证明在解决序列到序列问题时效果优异。
nn.Transformer 模块通过注意力机制( nn.MultiheadAttention )来取得输入与输出之间的全局相关性。nn.Transformer 模块现已高度模块化,可以直接用于构建其他模型(如 nn.TransformerEncoder)。
定义模型
在本教程中,我们训练 nn.TransformerEncoder
用于构建语言模型。语言模型的目标是对给定字/词序列打分,判断该字/词序列出现在文本中的概率。字符序列首先会被传进 embedding 层转化为向量,然后被传入位置编码层 (详见下段)。 nn.TransformerEncoder
由多个编码层nn.TransformerEncoderLayer组成。对输入序列的每一维需要施加一个自注意力权重影响。nn.TransformerEncoder
的自注意力权重只影响序列中靠前的数据,不修改之后位置的数据。在本任务中,nn.TransformerEncoder
的输出将会被送至最终的线性层,该层为一个 log-Softmax 层。
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return F.log_softmax(output, dim=-1)
PositionalEncoding
模块将字/词在序列中的绝对位置或相对位置信息编码。 位置编码与嵌入层具有相同的维度,这样位置信息向量和嵌入向量可以直接相加。 这里,我们使用 sin
和 cos
函数在不同位置的值来作为位置编码的值。具体计算公式见下方代码。
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
加载和整合数据
训练过程中使用的数据机是从 torchtext
中得到的wikitext的-2数据集。词典对象基于训练数据集进行构建。batchify()
函数把数据集中的数据排到多个列中,在划分成多个大小为 batch_size
的集合后,剩下的少于 batch_size
个数据会被丢弃。例如,对于字母序列(长度为26, batch_size
为4),将按照以下方法划分:
\[\begin{split}\begin{bmatrix} \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z} \end{bmatrix} \Rightarrow \begin{bmatrix} \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} & \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} & \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} & \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix} \end{bmatrix}\end{split}\]
对于我们的模型来说,只学习同一列中的数据的关系,不同的列各自独立。即我们的模型无法学习到 G
和 F
之间的联系,这样可以增加模型的并行度,增加学习效率。
import torchtext
from torchtext.data.utils import get_tokenizer
TEXT = torchtext.data.Field(tokenize=get_tokenizer("basic_english"),
init_token='<sos>',
eos_token='<eos>',
lower=True)
train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT)
TEXT.build_vocab(train_txt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def batchify(data, bsz):
data = TEXT.numericalize([data.examples[0].text])
# Divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data.to(device)
batch_size = 20
eval_batch_size = 10
train_data = batchify(train_txt, batch_size)
val_data = batchify(val_txt, eval_batch_size)
test_data = batchify(test_txt, eval_batch_size)
输出:
downloading wikitext-2-v1.zip
extracting
生成训练数据(输入和目标输出)的函数
get_batch()
函数生成用于 transformer
模型的输入和目标序列。它把源数据细分为长度为 bptt
的块。对于语言模型,需要当前词的下一个词作为目标词。例如当 bptt
为2, i
=0 时,该函数会产生以下数据:
张量的第0维是不同的块,块的大小与 Transformer 中的编码层大小一致。张量的第1维大小为 batch
大小。
bptt = 35
def get_batch(source, i):
seq_len = min(bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len].view(-1)
return data, target
初始化模型
模型的超参数如下,词典大小为 vocab
数组的长度。
ntokens = len(TEXT.vocab.stoi) # the size of vocabulary
emsize = 200 # embedding dimension
nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 2 # the number of heads in the multiheadattention models
dropout = 0.2 # the dropout value
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device)
运行模型
模型使用交叉墒( CrossEntropyLoss )作为损失函数,使用随机梯度下降( SGD )方法更新参数。初始学习率设置为5.0。 StepLR 用于调节学习速率。在训练过程中,使用nn.utils.clipgrad_norm 函数限制梯度大小以防梯度爆炸。
criterion = nn.CrossEntropyLoss()
lr = 5.0 # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
import time
def train():
model.train() # Turn on the train mode
total_loss = 0.
start_time = time.time()
ntokens = len(TEXT.vocab.stoi)
for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
data, targets = get_batch(train_data, i)
optimizer.zero_grad()
output = model(data)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
total_loss += loss.item()
log_interval = 200
if batch % log_interval == 0 and batch > 0:
cur_loss = total_loss / log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | '
'lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0],
elapsed * 1000 / log_interval,
cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
def evaluate(eval_model, data_source):
eval_model.eval() # Turn on the evaluation mode
total_loss = 0.
ntokens = len(TEXT.vocab.stoi)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, bptt):
data, targets = get_batch(data_source, i)
output = eval_model(data)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
在每个 epoch 结束时,若验证集的损失函数为最低则会更新一次学习率。
best_val_loss = float("inf")
epochs = 3 # The number of epochs
best_model = None
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
train()
val_loss = evaluate(model, val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)))
print('-' * 89)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = model
scheduler.step()
输出:
| epoch 1 | 200/ 2981 batches | lr 5.00 | ms/batch 35.59 | loss 8.12 | ppl 3348.51
| epoch 1 | 400/ 2981 batches | lr 5.00 | ms/batch 34.57 | loss 6.82 | ppl 912.80
| epoch 1 | 600/ 2981 batches | lr 5.00 | ms/batch 34.55 | loss 6.39 | ppl 597.41
| epoch 1 | 800/ 2981 batches | lr 5.00 | ms/batch 34.59 | loss 6.25 | ppl 517.17
| epoch 1 | 1000/ 2981 batches | lr 5.00 | ms/batch 34.58 | loss 6.12 | ppl 455.67
| epoch 1 | 1200/ 2981 batches | lr 5.00 | ms/batch 34.59 | loss 6.09 | ppl 442.33
| epoch 1 | 1400/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 6.04 | ppl 421.27
| epoch 1 | 1600/ 2981 batches | lr 5.00 | ms/batch 34.59 | loss 6.05 | ppl 423.61
| epoch 1 | 1800/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 5.96 | ppl 386.26
| epoch 1 | 2000/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 5.96 | ppl 387.13
| epoch 1 | 2200/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 5.85 | ppl 347.56
| epoch 1 | 2400/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 5.89 | ppl 362.72
| epoch 1 | 2600/ 2981 batches | lr 5.00 | ms/batch 34.60 | loss 5.90 | ppl 363.70
| epoch 1 | 2800/ 2981 batches | lr 5.00 | ms/batch 34.61 | loss 5.80 | ppl 330.43
-----------------------------------------------------------------------------------------
| end of epoch 1 | time: 107.65s | valid loss 5.77 | valid ppl 321.01
-----------------------------------------------------------------------------------------
| epoch 2 | 200/ 2981 batches | lr 4.75 | ms/batch 34.78 | loss 5.81 | ppl 333.28
| epoch 2 | 400/ 2981 batches | lr 4.75 | ms/batch 34.63 | loss 5.78 | ppl 324.24
| epoch 2 | 600/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.61 | ppl 272.10
| epoch 2 | 800/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.65 | ppl 283.77
| epoch 2 | 1000/ 2981 batches | lr 4.75 | ms/batch 34.61 | loss 5.60 | ppl 269.12
| epoch 2 | 1200/ 2981 batches | lr 4.75 | ms/batch 34.63 | loss 5.62 | ppl 275.40
| epoch 2 | 1400/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.62 | ppl 276.93
| epoch 2 | 1600/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.66 | ppl 287.64
| epoch 2 | 1800/ 2981 batches | lr 4.75 | ms/batch 34.63 | loss 5.59 | ppl 268.86
| epoch 2 | 2000/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.63 | ppl 277.73
| epoch 2 | 2200/ 2981 batches | lr 4.75 | ms/batch 34.63 | loss 5.52 | ppl 249.01
| epoch 2 | 2400/ 2981 batches | lr 4.75 | ms/batch 34.61 | loss 5.58 | ppl 265.86
| epoch 2 | 2600/ 2981 batches | lr 4.75 | ms/batch 34.62 | loss 5.60 | ppl 269.12
| epoch 2 | 2800/ 2981 batches | lr 4.75 | ms/batch 34.63 | loss 5.51 | ppl 248.37
-----------------------------------------------------------------------------------------
| end of epoch 2 | time: 107.58s | valid loss 5.60 | valid ppl 270.75
-----------------------------------------------------------------------------------------
| epoch 3 | 200/ 2981 batches | lr 4.51 | ms/batch 34.80 | loss 5.55 | ppl 257.31
| epoch 3 | 400/ 2981 batches | lr 4.51 | ms/batch 34.63 | loss 5.56 | ppl 259.12
| epoch 3 | 600/ 2981 batches | lr 4.51 | ms/batch 34.62 | loss 5.36 | ppl 213.08
| epoch 3 | 800/ 2981 batches | lr 4.51 | ms/batch 34.63 | loss 5.44 | ppl 229.59
| epoch 3 | 1000/ 2981 batches | lr 4.51 | ms/batch 34.63 | loss 5.37 | ppl 215.90
| epoch 3 | 1200/ 2981 batches | lr 4.51 | ms/batch 34.64 | loss 5.41 | ppl 223.49
| epoch 3 | 1400/ 2981 batches | lr 4.51 | ms/batch 34.63 | loss 5.43 | ppl 228.08
| epoch 3 | 1600/ 2981 batches | lr 4.51 | ms/batch 34.62 | loss 5.47 | ppl 238.36
| epoch 3 | 1800/ 2981 batches | lr 4.51 | ms/batch 34.58 | loss 5.40 | ppl 222.43
| epoch 3 | 2000/ 2981 batches | lr 4.51 | ms/batch 34.56 | loss 5.44 | ppl 229.30
| epoch 3 | 2200/ 2981 batches | lr 4.51 | ms/batch 34.55 | loss 5.32 | ppl 204.63
| epoch 3 | 2400/ 2981 batches | lr 4.51 | ms/batch 34.54 | loss 5.39 | ppl 220.17
| epoch 3 | 2600/ 2981 batches | lr 4.51 | ms/batch 34.55 | loss 5.41 | ppl 223.92
| epoch 3 | 2800/ 2981 batches | lr 4.51 | ms/batch 34.55 | loss 5.34 | ppl 209.22
-----------------------------------------------------------------------------------------
| end of epoch 3 | time: 107.47s | valid loss 5.54 | valid ppl 253.71
-----------------------------------------------------------------------------------------
使用测试集评价模型
使用测试集来测试模型。
test_loss = evaluate(best_model, test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)
输出:
=========================================================================================
| End of training | test loss 5.43 | test ppl 229.27
=========================================================================================
脚本的总运行时间: (5分钟38.763秒)